Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Ultrasound Med Biol. 2021 Sep;47(9):2676-2691. doi: 10.1016/j.ultrasmedbio.2021.04.025. Epub 2021 Jun 8.
Microbubbles (MBs) are 1 to 10 µm gas particles stabilized by an amphiphilic shell capable of responding to biomedical ultrasound with strong acoustic signals, allowing them to be commonly used in ultrasound imaging and therapy. The composition of both the shell and the core determines their stability and acoustic properties. While there has been extensive characterization of the dissolution, oscillation, cavitation, collapse and therefore, ultrasound contrast of MBs under static conditions, few reports have examined such behavior under hydrodynamic flow. In this study, we evaluate the interplay of ultrasound parameters (five different mechanical indices [MIs]), MB shell parameter (shell stiffness), type of gas (perfluorocarbon for diagnostic imaging and xenon as a therapeutic gas), and a flow parameter (flow rate) on the ultrasound signal of phospholipid-stabilized MBs flowing through a latex tube embedded in a tissue-mimicking phantom. We find that the contrast gradient (CG), a metric of the rate of decay of contrast along the length of the tube, and the contrast peak (CP), the location where the maximum contrast is reached, depend on the conditions of flow, imaging, and MB material. For instance, while the contrast near the flow inlet of the field of view is highest for a softer shell (dipalmitoylphosphatidylcholine [DPPC], C16) than for stiffer shells (distearoylphosphatidylcholine [DSPC], C18, and dibehenoylphosphatidylcholine [DBPC], C22), the contrast decay is also faster; stiffer shells provide more resistance and hence lead to slower MB dissolution/destruction. At higher flow rates, the CG is low for a fixed length of time because each MB is exposed to ultrasound for a shorter period. The CG becomes high for low flow rates, especially at high incident pressures (high MI), causing more MB destruction closer to the inlet of the field of view. Also, the CP shifts toward the inlet at low flow rates, high MIs, and low shell stiffness. We also report the first demonstration of sustained ultrasound flow imaging of a water-soluble, therapeutic gas MB (xenon). We find that an increased MB concentration is necessary for obtaining the same signal magnitude for xenon MBs. In summary, this study builds a framework depicting how multiple variables simultaneously affect the evolution of MB ultrasound contrast under flow. Depending on the MB composition, imaging conditions, transducer positioning, and image processing, building on such a framework could potentially allow for extraction of additional diagnostic information than is commonly analyzed for physiological flow.
微泡(MBs)是 1 到 10 微米的气体颗粒,由两亲性外壳稳定,能够对生物医学超声产生强烈的声学信号,因此可广泛应用于超声成像和治疗。外壳和核心的组成决定了它们的稳定性和声学特性。虽然已经对 MBs 在静态条件下的溶解、振荡、空化、塌陷以及因此的超声对比进行了广泛的表征,但很少有报道研究在流体动力学流动条件下的这种行为。在这项研究中,我们评估了超声参数(五种不同的力学指数[MI])、MB 壳参数(壳硬度)、气体类型(用于诊断成像的全氟碳气体和作为治疗性气体的氙气)以及流动参数(流速)对磷脂稳定的 MBs 通过嵌入组织模拟体模中的乳胶管流动时的超声信号的相互作用。我们发现,对比度梯度(CG),即对比沿管长度衰减的速率的度量,以及对比度峰值(CP),即达到最大对比度的位置,取决于流动、成像和 MB 材料的条件。例如,虽然在视野的流动入口附近,较软的外壳(二棕榈酰磷脂酰胆碱[DPPC],C16)的对比度高于较硬的外壳(二硬脂酰磷脂酰胆碱[DSPC],C18 和二油酰基磷脂酰胆碱[DBPC],C22),但对比度衰减也更快;较硬的外壳提供更多阻力,因此导致 MB 溶解/破坏速度更慢。在较高的流速下,由于每个 MB 暴露于超声的时间较短,固定长度的 CG 较低。在低流速下,CG 较高,尤其是在较高的入射压力(高 MI)下,导致在更接近视野入口处发生更多的 MB 破坏。此外,CP 在低流速、高 MI 和低壳硬度下向入口移动。我们还首次报告了水溶性治疗性气体 MB(氙气)的持续超声流动成像。我们发现,为了获得相同的信号幅度,需要增加 MB 浓度。总之,本研究建立了一个框架,描述了多个变量如何同时影响流动下 MB 超声对比的演变。根据 MB 的组成、成像条件、换能器的位置和图像处理,在这样的框架上进行构建,可能会比通常用于生理流动的分析提取更多的诊断信息。