Suppr超能文献

在流动条件下氟碳和氙微泡声对比度的多变量相关性

Multivariable Dependence of Acoustic Contrast of Fluorocarbon and Xenon Microbubbles under Flow.

机构信息

Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

Ultrasound Med Biol. 2021 Sep;47(9):2676-2691. doi: 10.1016/j.ultrasmedbio.2021.04.025. Epub 2021 Jun 8.

Abstract

Microbubbles (MBs) are 1 to 10 µm gas particles stabilized by an amphiphilic shell capable of responding to biomedical ultrasound with strong acoustic signals, allowing them to be commonly used in ultrasound imaging and therapy. The composition of both the shell and the core determines their stability and acoustic properties. While there has been extensive characterization of the dissolution, oscillation, cavitation, collapse and therefore, ultrasound contrast of MBs under static conditions, few reports have examined such behavior under hydrodynamic flow. In this study, we evaluate the interplay of ultrasound parameters (five different mechanical indices [MIs]), MB shell parameter (shell stiffness), type of gas (perfluorocarbon for diagnostic imaging and xenon as a therapeutic gas), and a flow parameter (flow rate) on the ultrasound signal of phospholipid-stabilized MBs flowing through a latex tube embedded in a tissue-mimicking phantom. We find that the contrast gradient (CG), a metric of the rate of decay of contrast along the length of the tube, and the contrast peak (CP), the location where the maximum contrast is reached, depend on the conditions of flow, imaging, and MB material. For instance, while the contrast near the flow inlet of the field of view is highest for a softer shell (dipalmitoylphosphatidylcholine [DPPC], C16) than for stiffer shells (distearoylphosphatidylcholine [DSPC], C18, and dibehenoylphosphatidylcholine [DBPC], C22), the contrast decay is also faster; stiffer shells provide more resistance and hence lead to slower MB dissolution/destruction. At higher flow rates, the CG is low for a fixed length of time because each MB is exposed to ultrasound for a shorter period. The CG becomes high for low flow rates, especially at high incident pressures (high MI), causing more MB destruction closer to the inlet of the field of view. Also, the CP shifts toward the inlet at low flow rates, high MIs, and low shell stiffness. We also report the first demonstration of sustained ultrasound flow imaging of a water-soluble, therapeutic gas MB (xenon). We find that an increased MB concentration is necessary for obtaining the same signal magnitude for xenon MBs. In summary, this study builds a framework depicting how multiple variables simultaneously affect the evolution of MB ultrasound contrast under flow. Depending on the MB composition, imaging conditions, transducer positioning, and image processing, building on such a framework could potentially allow for extraction of additional diagnostic information than is commonly analyzed for physiological flow.

摘要

微泡(MBs)是 1 到 10 微米的气体颗粒,由两亲性外壳稳定,能够对生物医学超声产生强烈的声学信号,因此可广泛应用于超声成像和治疗。外壳和核心的组成决定了它们的稳定性和声学特性。虽然已经对 MBs 在静态条件下的溶解、振荡、空化、塌陷以及因此的超声对比进行了广泛的表征,但很少有报道研究在流体动力学流动条件下的这种行为。在这项研究中,我们评估了超声参数(五种不同的力学指数[MI])、MB 壳参数(壳硬度)、气体类型(用于诊断成像的全氟碳气体和作为治疗性气体的氙气)以及流动参数(流速)对磷脂稳定的 MBs 通过嵌入组织模拟体模中的乳胶管流动时的超声信号的相互作用。我们发现,对比度梯度(CG),即对比沿管长度衰减的速率的度量,以及对比度峰值(CP),即达到最大对比度的位置,取决于流动、成像和 MB 材料的条件。例如,虽然在视野的流动入口附近,较软的外壳(二棕榈酰磷脂酰胆碱[DPPC],C16)的对比度高于较硬的外壳(二硬脂酰磷脂酰胆碱[DSPC],C18 和二油酰基磷脂酰胆碱[DBPC],C22),但对比度衰减也更快;较硬的外壳提供更多阻力,因此导致 MB 溶解/破坏速度更慢。在较高的流速下,由于每个 MB 暴露于超声的时间较短,固定长度的 CG 较低。在低流速下,CG 较高,尤其是在较高的入射压力(高 MI)下,导致在更接近视野入口处发生更多的 MB 破坏。此外,CP 在低流速、高 MI 和低壳硬度下向入口移动。我们还首次报告了水溶性治疗性气体 MB(氙气)的持续超声流动成像。我们发现,为了获得相同的信号幅度,需要增加 MB 浓度。总之,本研究建立了一个框架,描述了多个变量如何同时影响流动下 MB 超声对比的演变。根据 MB 的组成、成像条件、换能器的位置和图像处理,在这样的框架上进行构建,可能会比通常用于生理流动的分析提取更多的诊断信息。

相似文献

1
Multivariable Dependence of Acoustic Contrast of Fluorocarbon and Xenon Microbubbles under Flow.
Ultrasound Med Biol. 2021 Sep;47(9):2676-2691. doi: 10.1016/j.ultrasmedbio.2021.04.025. Epub 2021 Jun 8.
2
Ultrasound Responsive Noble Gas Microbubbles for Applications in Image-Guided Gas Delivery.
Adv Healthc Mater. 2020 May;9(9):e1901721. doi: 10.1002/adhm.201901721. Epub 2020 Mar 24.
4
Effects of encapsulated gas on stability of lipid-based microbubbles and ultrasound-triggered drug delivery.
J Control Release. 2019 Oct;311-312:65-73. doi: 10.1016/j.jconrel.2019.08.023. Epub 2019 Aug 25.
6
Tailor-Made Single-Core PLGA Microbubbles as Acoustic Cavitation Enhancers for Therapeutic Applications.
ACS Appl Mater Interfaces. 2021 Jun 9;13(22):25748-25758. doi: 10.1021/acsami.1c04770. Epub 2021 May 28.
7
3-D Ultrafast Ultrasound Imaging of Microbubbles Trapped Using an Acoustic Vortex.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Dec;68(12):3507-3514. doi: 10.1109/TUFFC.2021.3095241. Epub 2021 Nov 23.
8
Characterization and Imaging of Lipid-Shelled Microbubbles for Ultrasound-Triggered Release of Xenon.
Neurotherapeutics. 2019 Jul;16(3):878-890. doi: 10.1007/s13311-019-00733-4.
9
Fluorinated Copolypeptide-Stabilized Microbubbles with Maleimide-Decorated Surfaces as Long-Term Ultrasound Contrast Agents.
Angew Chem Int Ed Engl. 2022 Oct 10;61(41):e202209610. doi: 10.1002/anie.202209610. Epub 2022 Sep 1.

引用本文的文献

1
Can Ultrasound-Guided Xenon Delivery Provide Neuroprotection in Traumatic Brain Injury?
Neurotrauma Rep. 2022 Feb 22;3(1):97-104. doi: 10.1089/neur.2021.0070. eCollection 2022.
2
The Impact of Surface Drug Distribution on the Acoustic Behavior of DOX-Loaded Microbubbles.
Pharmaceutics. 2021 Dec 4;13(12):2080. doi: 10.3390/pharmaceutics13122080.

本文引用的文献

1
Photoacoustic and Ultrasound Dual-Mode Imaging via Functionalization of Recombinant Protein-Stabilized Microbubbles with Methylene Blue.
ACS Appl Bio Mater. 2019 Sep 16;2(9):4020-4026. doi: 10.1021/acsabm.9b00545. Epub 2019 Aug 27.
2
Ultrasound Responsive Noble Gas Microbubbles for Applications in Image-Guided Gas Delivery.
Adv Healthc Mater. 2020 May;9(9):e1901721. doi: 10.1002/adhm.201901721. Epub 2020 Mar 24.
3
Phospholipid Oxygen Microbubbles for Image-Guided Therapy.
Nanotheranostics. 2020 Feb 28;4(2):83-90. doi: 10.7150/ntno.43808. eCollection 2020.
4
Brachial flow-mediated dilation by continuous monitoring of arterial cross-section with ultrasound imaging.
Ultrasound. 2019 Nov;27(4):241-251. doi: 10.1177/1742271X19857770. Epub 2019 Jun 20.
5
Characterization and Imaging of Lipid-Shelled Microbubbles for Ultrasound-Triggered Release of Xenon.
Neurotherapeutics. 2019 Jul;16(3):878-890. doi: 10.1007/s13311-019-00733-4.
6
Engineering the Echogenic Properties of Microfluidic Microbubbles Using Mixtures of Recombinant Protein and Amphiphilic Copolymers.
Langmuir. 2019 Aug 6;35(31):10079-10086. doi: 10.1021/acs.langmuir.8b03882. Epub 2019 Feb 27.
7
Reverse engineering the ultrasound contrast agent.
Adv Colloid Interface Sci. 2018 Dec;262:39-49. doi: 10.1016/j.cis.2018.10.004. Epub 2018 Oct 24.
8
High-Frame-Rate Contrast-Enhanced Ultrasound for Velocimetry in the Human Abdominal Aorta.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Dec;65(12):2245-2254. doi: 10.1109/TUFFC.2018.2846416. Epub 2018 Jun 11.
9
Monodisperse Versus Polydisperse Ultrasound Contrast Agents: Non-Linear Response, Sensitivity, and Deep Tissue Imaging Potential.
Ultrasound Med Biol. 2018 Jul;44(7):1482-1492. doi: 10.1016/j.ultrasmedbio.2018.03.019. Epub 2018 Apr 25.
10
Photoacoustic technique to measure temperature effects on microbubble viscoelastic properties.
Appl Phys Lett. 2018 Mar 12;112(11):111905. doi: 10.1063/1.5005548. Epub 2018 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验