Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland.
Sci Rep. 2021 Jun 10;11(1):12261. doi: 10.1038/s41598-021-91544-1.
Currently, elective clinical target volume (CTV-N) definition for head and neck squamous cell carcinoma (HNSCC) is mostly based on the prevalence of nodal involvement for a given tumor location. In this work, we propose a probabilistic model for lymphatic metastatic spread that can quantify the risk of microscopic involvement in lymph node levels (LNL) given the location of macroscopic metastases and T-category. This may allow for further personalized CTV-N definition based on an individual patient's state of disease. We model the patient's state of metastatic lymphatic progression as a collection of hidden binary random variables that indicate the involvement of LNLs. In addition, each LNL is associated with observed binary random variables that indicate whether macroscopic metastases are detected. A hidden Markov model (HMM) is used to compute the probabilities of transitions between states over time. The underlying graph of the HMM represents the anatomy of the lymphatic drainage system. Learning of the transition probabilities is done via Markov chain Monte Carlo sampling and is based on a dataset of HNSCC patients in whom involvement of individual LNLs was reported. The model is demonstrated for ipsilateral metastatic spread in oropharyngeal HNSCC patients. We demonstrate the model's capability to quantify the risk of microscopic involvement in levels III and IV, depending on whether macroscopic metastases are observed in the upstream levels II and III, and depending on T-category. In conclusion, the statistical model of lymphatic progression may inform future, more personalized, guidelines on which LNL to include in the elective CTV. However, larger multi-institutional datasets for model parameter learning are required for that.
目前,头颈部鳞状细胞癌(HNSCC)的选择性临床靶区(CTV-N)定义主要基于特定肿瘤位置的淋巴结受累的普遍性。在这项工作中,我们提出了一种用于淋巴转移扩散的概率模型,该模型可以根据宏观转移和 T 分期来量化淋巴结水平(LNL)微观受累的风险。这可能允许根据个体患者的疾病状态进一步进行个性化的 CTV-N 定义。我们将患者的淋巴转移进展状态建模为一系列隐藏的二进制随机变量,这些变量表示 LNL 的受累情况。此外,每个 LNL 都与表示是否检测到宏观转移的观察到的二进制随机变量相关联。隐马尔可夫模型(HMM)用于计算随时间在状态之间转移的概率。HMM 的基础图表示淋巴引流系统的解剖结构。通过马尔可夫链蒙特卡罗采样进行转移概率的学习,并且基于报告了个别 LNL 受累的 HNSCC 患者的数据集。该模型用于演示口咽 HNSCC 患者同侧转移性扩散。我们展示了该模型根据上游水平 II 和 III 中是否观察到宏观转移以及 T 分期来量化 III 和 IV 水平微观受累风险的能力。总之,淋巴进展的统计模型可以为未来更个性化的指南提供信息,说明要包括在选择性 CTV 中的哪些 LNL。但是,需要更大的多机构数据集来学习模型参数。