Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
Skeletal Radiol. 2022 Jan;51(1):145-151. doi: 10.1007/s00256-021-03828-2. Epub 2021 Jun 10.
This study evaluated the clinical utility of a phantom-based convolutional neural network noise reduction framework for whole-body-low-dose CT skeletal surveys.
The CT exams of ten patients with multiple myeloma were retrospectively analyzed. Exams were acquired with routine whole-body-low-dose CT protocol and projection noise insertion was used to simulate 25% dose exams. Images were reconstructed with either iterative reconstruction or filtered back projection with convolutional neural network post-processing. Diagnostic quality and structure visualization were blindly rated (subjective scale ranging from 0 [poor] to 100 [excellent]) by three musculoskeletal radiologists for iterative reconstruction and convolutional neural network images at routine whole-body-low-dose and 25% dose CT.
For the diagnostic quality rating, the convolutional neural network outscored iterative reconstruction at routine whole-body-low-dose CT (convolutional neural network: 95 ± 5, iterative reconstruction: 85 ± 8) and at the 25% dose level (convolutional neural network: 79 ± 10, iterative reconstruction: 22 ± 13). Convolutional neural network applied to 25% dose was rated inferior to iterative reconstruction applied to routine dose. Similar trends were observed in rating experiments focusing on structure visualization.
Results indicate that the phantom-based convolutional neural network noise reduction framework can improve visualization of critical structures within CT skeletal surveys. At matched dose level, the convolutional neural network outscored iterative reconstruction for all conditions studied. The image quality improvement of convolutional neural network applied to 25% dose indicates a potential for dose reduction; however, the 75% dose reduction condition studied is not currently recommended for clinical implementation.
本研究评估了基于体模的卷积神经网络降噪框架在全身低剂量 CT 骨骼扫描中的临床应用价值。
回顾性分析了 10 例多发性骨髓瘤患者的 CT 检查。采用常规全身低剂量 CT 协议进行检查,并使用投影噪声插入法模拟 25%剂量检查。图像采用迭代重建或滤波反投影联合卷积神经网络后处理进行重建。三位肌肉骨骼放射科医生对迭代重建和卷积神经网络图像进行了盲法评价(主观评分范围为 0[差]至 100[优]),评价内容包括常规全身低剂量和 25%剂量 CT 下的诊断质量和结构可视化。
在诊断质量评分方面,卷积神经网络在常规全身低剂量 CT 时优于迭代重建(卷积神经网络:95±5,迭代重建:85±8),在 25%剂量时也优于迭代重建(卷积神经网络:79±10,迭代重建:22±13)。将卷积神经网络应用于 25%剂量时,其评分低于将迭代重建应用于常规剂量时的评分。在关注结构可视化的评分实验中也观察到了类似的趋势。
结果表明,基于体模的卷积神经网络降噪框架可改善 CT 骨骼扫描中关键结构的可视化效果。在匹配剂量水平下,卷积神经网络在所有研究条件下的评分均优于迭代重建。在 25%剂量下应用卷积神经网络可提高图像质量,表明有降低剂量的潜力;然而,目前不推荐研究中 75%的剂量降低条件用于临床实施。