IEEE/ACM Trans Comput Biol Bioinform. 2022 Mar-Apr;19(2):655-665. doi: 10.1109/TCBB.2021.3088614. Epub 2022 Apr 1.
Identification of targets among known drugs plays an important role in drug repurposing and discovery. Computational approaches for prediction of drug-target interactions (DTIs)are highly desired in comparison to traditional biological experiments as its fast and low price. Moreover, recent advances of systems biology approaches have generated large-scale heterogeneous, biological information networks data, which offer opportunities for machine learning-based identification of DTIs. We present a novel Inductive Matrix Completion with Heterogeneous Graph Attention Network approach (IMCHGAN)for predicting DTIs. IMCHGAN first adopts a two-level neural attention mechanism approach to learn drug and target latent feature representations from the DTI heterogeneous network respectively. Then, the learned latent features are fed into the Inductive Matrix Completion (IMC)prediction score model which computes the best projection from drug space onto target space and output DTI score via the inner product of projected drug and target feature representations. IMCHGAN is an end-to-end neural network learning framework where the parameters of both the prediction score model and the feature representation learning model are simultaneously optimized via backpropagation under supervising of the observed known drug-target interactions data. We compare IMCHGAN with other state-of-the-art baselines on two real DTI experimental datasets. The results show that our method is superior to existing methods in term of AUC and AUPR. Moreover, IMCHGAN also shows it has strong predictive power for novel (unknown)DTIs. All datasets and code can be obtained from https://github.com/ljatynu/IMCHGAN/.
在已知药物中鉴定靶点在药物再利用和发现中起着重要作用。与传统的生物学实验相比,预测药物-靶点相互作用(DTI)的计算方法具有快速和低成本的优势。此外,系统生物学方法的最新进展生成了大规模的异质生物信息网络数据,为基于机器学习的 DTI 识别提供了机会。我们提出了一种新颖的基于异质图注意网络的归纳矩阵补全方法(IMCHGAN)来预测 DTI。IMCHGAN 首先采用两级神经注意机制方法,分别从 DTI 异质网络中学习药物和靶点的潜在特征表示。然后,将学习到的潜在特征输入到归纳矩阵补全(IMC)预测评分模型中,该模型通过将药物空间投影到目标空间的最佳投影并通过投影药物和目标特征表示的内积输出 DTI 评分。IMCHGAN 是一个端到端的神经网络学习框架,其中预测评分模型和特征表示学习模型的参数通过在监督观察到的已知药物-靶点相互作用数据的情况下通过反向传播同时进行优化。我们在两个真实的 DTI 实验数据集上,将 IMCHGAN 与其他最先进的基线进行了比较。结果表明,我们的方法在 AUC 和 AUPR 方面优于现有方法。此外,IMCHGAN 还显示出对新的(未知)DTI 具有很强的预测能力。所有数据集和代码都可以从 https://github.com/ljatynu/IMCHGAN/ 获得。