Suppr超能文献

多回波 fMRI 组合和快速 T*-映射对离线和实时 BOLD 灵敏度的影响。

The effects of multi-echo fMRI combination and rapid T*-mapping on offline and real-time BOLD sensitivity.

机构信息

Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Research and Development, Epilepsy Centre Kempenhaeghe, Heeze, the Netherlands; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Germany; Department of Psychology, Education and Child studies, Erasmus School of Social and Behavioral Sciences, Erasmus University Rotterdam, the Netherlands.

Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Philips Healthcare, Best, the Netherlands.

出版信息

Neuroimage. 2021 Sep;238:118244. doi: 10.1016/j.neuroimage.2021.118244. Epub 2021 Jun 8.

Abstract

A variety of strategies are used to combine multi-echo functional magnetic resonance imaging (fMRI) data, yet recent literature lacks a systematic comparison of the available options. Here we compare six different approaches derived from multi-echo data and evaluate their influences on BOLD sensitivity for offline and in particular real-time use cases: a single-echo time series (based on Echo 2), the real-time T*-mapped time series (TFIT) and four combined time series (T-weighted, tSNR-weighted, TE-weighted, and a new combination scheme termed TFIT-weighted). We compare the influences of these six multi-echo derived time series on BOLD sensitivity using a healthy participant dataset (N = 28) with four task-based fMRI runs and two resting state runs. We show that the TFIT-weighted combination yields the largest increase in temporal signal-to-noise ratio across task and resting state runs. We demonstrate additionally for all tasks that the TFIT time series consistently yields the largest offline effect size measures and real-time region-of-interest based functional contrasts and temporal contrast-to-noise ratios. These improvements show the promising utility of multi-echo fMRI for studies employing real-time paradigms, while further work is advised to mitigate the decreased tSNR of the TFIT time series. We recommend the use and continued exploration of T*FIT for offline task-based and real-time region-based fMRI analysis. Supporting information includes: a data repository (https://dataverse.nl/dataverse/rt-me-fmri), an interactive web-based application to explore the data (https://rt-me-fmri.herokuapp.com/), and further materials and code for reproducibility (https://github.com/jsheunis/rt-me-fMRI).

摘要

多种策略被用于组合多回波功能磁共振成像 (fMRI) 数据,但最近的文献缺乏对现有选项的系统比较。在这里,我们比较了六种不同的方法,这些方法来自多回波数据,并评估了它们对离线和特别是实时用例的 BOLD 灵敏度的影响:一个单回波时间序列(基于回波 2)、实时 T*-映射时间序列 (TFIT) 和四个组合时间序列 (T-加权、tSNR-加权、TE-加权和一个新的组合方案,称为 TFIT-加权)。我们使用一个健康参与者数据集 (N = 28) 比较了这六种多回波衍生时间序列对 BOLD 灵敏度的影响,该数据集包含四个任务型 fMRI 运行和两个静息态运行。我们表明,TFIT-加权组合在任务和静息态运行中产生了最大的时间信号到噪声比增加。我们还证明了,对于所有任务,TFIT 时间序列始终产生最大的离线效应量测量和实时感兴趣区基于功能对比和时间对比噪声比。这些改进表明多回波 fMRI 在采用实时范式的研究中具有很有前途的应用,同时建议进一步的工作来减轻 TFIT 时间序列的 tSNR 下降。我们建议使用和继续探索 T*FIT 进行离线任务型和实时基于区域的 fMRI 分析。支持信息包括:一个数据存储库 (https://dataverse.nl/dataverse/rt-me-fmri)、一个用于探索数据的交互式网络应用程序 (https://rt-me-fmri.herokuapp.com/),以及用于可重复性的进一步材料和代码 (https://github.com/jsheunis/rt-me-fMRI)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验