Suppr超能文献

机器学习在神经影像学中用于胶质瘤检测和分类的应用:人工智能增强的系统评价。

Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review.

机构信息

School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia.

School of Medicine, The University of Notre Dame Australia, Sydney, NSW, Australia; Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia.

出版信息

J Clin Neurosci. 2021 Jul;89:177-198. doi: 10.1016/j.jocn.2021.04.043. Epub 2021 May 13.

Abstract

Glioma is the most common primary intraparenchymal tumor of the brain and the 5-year survival rate of high-grade glioma is poor. Magnetic resonance imaging (MRI) is essential for detecting, characterizing and monitoring brain tumors but definitive diagnosis still relies on surgical pathology. Machine learning has been applied to the analysis of MRI data in glioma research and has the potential to change clinical practice and improve patient outcomes. This systematic review synthesizes and analyzes the current state of machine learning applications to glioma MRI data and explores the use of machine learning for systematic review automation. Various datapoints were extracted from the 153 studies that met inclusion criteria and analyzed. Natural language processing (NLP) analysis involved keyword extraction, topic modeling and document classification. Machine learning has been applied to tumor grading and diagnosis, tumor segmentation, non-invasive genomic biomarker identification, detection of progression and patient survival prediction. Model performance was generally strong (AUC = 0.87 ± 0.09; sensitivity = 0.87 ± 0.10; specificity = 0.0.86 ± 0.10; precision = 0.88 ± 0.11). Convolutional neural network, support vector machine and random forest algorithms were top performers. Deep learning document classifiers yielded acceptable performance (mean 5-fold cross-validation AUC = 0.71). Machine learning tools and data resources were synthesized and summarized to facilitate future research. Machine learning has been widely applied to the processing of MRI data in glioma research and has demonstrated substantial utility. NLP and transfer learning resources enabled the successful development of a replicable method for automating the systematic review article screening process, which has potential for shortening the time from discovery to clinical application in medicine.

摘要

脑胶质瘤是脑内最常见的原发性实质肿瘤,高级别脑胶质瘤的 5 年生存率较差。磁共振成像(MRI)对于检测、描绘和监测脑肿瘤至关重要,但明确诊断仍依赖于手术病理。机器学习已被应用于脑胶质瘤 MRI 数据分析,具有改变临床实践和改善患者预后的潜力。本系统综述综合分析了目前机器学习在脑胶质瘤 MRI 数据中的应用,并探讨了机器学习在系统综述自动化中的应用。从符合纳入标准的 153 项研究中提取了各种数据点并进行了分析。自然语言处理(NLP)分析涉及关键词提取、主题建模和文档分类。机器学习已被应用于肿瘤分级和诊断、肿瘤分割、非侵入性基因组生物标志物识别、进展检测和患者生存预测。模型性能普遍较强(AUC=0.87±0.09;敏感性=0.87±0.10;特异性=0.0.86±0.10;准确性=0.88±0.11)。卷积神经网络、支持向量机和随机森林算法是表现最好的算法。深度学习文档分类器的性能可接受(平均 5 折交叉验证 AUC=0.71)。综合和总结了机器学习工具和数据资源,以方便未来的研究。机器学习已广泛应用于脑胶质瘤研究中的 MRI 数据处理,并显示出了很大的实用性。NLP 和迁移学习资源使自动化系统综述文章筛选过程的可复制方法的成功开发成为可能,这有可能缩短从发现到医学临床应用的时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验