Suppr超能文献

三碳糖生物碱-咖啡酰奎尼酸酰胺合成酶在禾本科植物中的分子和结构特征,该酶是羟基肉桂酸酰胺积累的关键调节因子。

Molecular and structural characterization of agmatine coumaroyltransferase in Triticeae, the key regulator of hydroxycinnamic acid amide accumulation.

机构信息

Department of Agricultural Chemistry, Tokyo University of Agriculture, Setagaya, Tokyo, 156-8502, Japan.

Department of Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo, 156-8502, Japan.

出版信息

Phytochemistry. 2021 Sep;189:112825. doi: 10.1016/j.phytochem.2021.112825. Epub 2021 Jun 10.

Abstract

Hydroxycinnamic acid amides (HCAAs) are involved in stress-induced defense in many plant species. Barley accumulates high concentrations of HCAAs irrespective of exogenous stressors, while other major cereals such as wheat and rice accumulate relatively low levels of HCAAs in intact tissues. The primary HCAA species in barley are biosynthesized by agmatine p-coumaroyltransferase (ACT), an N-acyltransferase of the BAHD superfamily. However, the molecular basis underlying barley's uniquely high HCAA accumulation has not been elucidated, and information regarding the structural details of BAHD N-acyltransferases is limited. Hence, we aimed to investigate the ACTs of family Poaceae. We isolated ACT (-like) genes, including those previously undescribed, and investigated their enzymatic and genetic features. All the identified enzymes belonged to clade IVa of the BAHD superfamily. The barley and wheat ACTs were further categorized, based on catalytic properties and primary structures, into ACT1 and ACT2 groups, the encoding loci of which are neighbors on the same chromosome. While all ACTs exhibited similar K values for CoA-thioesters (acyl-group donors), members of the ACT1 group showed a distinctly higher affinity for agmatine (acyl-acceptor). Among the ACTs tested, an ACT isozyme in barley (HvACT1-1) showed the highest catalytic efficiency and transcript level, indicating that ACT regulates high-level HCAA accumulation in barley. For further enzymatic characterization of the ACTs, we crystalized wheat ACT2 (TaACT2) and determined its structure at 2.3 Å resolution. Structural alignment of TaACT2 and HvACT1-1 showed that the architectures of the substrate binding pockets were well conserved. However, the structure of a loop located at the entrance to acyl-acceptor binding site may be more flexible in TaACT2, which could be responsible for the lower affinity of TaACT2 to agmatine. Mutations of HvACT1-1 at Glu372 and Asp374 within one of the clade-IV specific motifs facing the deduced acyl-acceptor binding pocket caused significant catalytic deterioration toward agmatine both in K and k, suggesting their key roles in acyl acceptor binding by the clade-IV enzymes. This study elucidated the molecular basis of how plants accumulate defensive specialized metabolites and provided insights into developing efficient and eco-friendly agricultural methods.

摘要

羟基肉桂酰胺(HCAA)参与许多植物物种的应激诱导防御。大麦无论是否受到外源胁迫,都会积累高浓度的 HCAA,而其他主要谷物,如小麦和水稻,在完整组织中则积累相对较低水平的 HCAA。大麦中主要的 HCAA 物种是由胍丁胺对香豆酰转移酶(ACT)生物合成的,ACT 是 BAHD 超家族的 N-酰基转移酶。然而,大麦独特的高 HCAA 积累的分子基础尚未阐明,并且关于 BAHD N-酰基转移酶结构细节的信息也很有限。因此,我们旨在研究禾本科植物的 ACT。我们分离出包括以前未描述的 ACT(类似物)基因,并研究了它们的酶学和遗传特征。所有鉴定出的酶都属于 BAHD 超家族的 clade IVa。根据催化特性和一级结构,大麦和小麦的 ACT 进一步分为 ACT1 和 ACT2 组,其编码基因位于同一染色体上的相邻位置。虽然所有的 ACT 对 CoA-硫酯(酰基供体)表现出相似的 K 值,但 ACT1 组的成员对胍丁胺(酰基受体)表现出明显更高的亲和力。在所测试的 ACT 中,大麦中的一种 ACT 同工酶(HvACT1-1)表现出最高的催化效率和转录水平,表明 ACT 调节大麦中高水平的 HCAA 积累。为了进一步对 ACT 进行酶学表征,我们对小麦 ACT2(TaACT2)进行了结晶,并以 2.3Å 的分辨率确定了其结构。TaACT2 和 HvACT1-1 的结构比对表明,底物结合口袋的结构高度保守。然而,位于酰基受体结合位点入口处的一个环的结构在 TaACT2 中可能更具柔性,这可能是 TaACT2 对胍丁胺亲和力较低的原因。在一个面向推断的酰基受体结合口袋的 clade-IV 特异性模体中,HvACT1-1 的 Glu372 和 Asp374 突变导致对胍丁胺的催化恶化,无论是 K 值还是 k 值都显著降低,这表明它们在 clade-IV 酶的酰基受体结合中起着关键作用。本研究阐明了植物积累防御性特殊代谢物的分子基础,并为开发高效和环保的农业方法提供了思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验