Suppr超能文献

金属有机框架衍生的Co@C@MnO纳米棒具有增强的界面极化以促进电磁波吸收。

MOFs derived Co@C@MnO nanorods with enhanced interfacial polarization for boosting the electromagnetic wave absorption.

作者信息

Qiu Yun, Wen Bo, Yang Haibo, Lin Ying, Cheng Yan, Jin Lingxiang

机构信息

Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.

Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.

出版信息

J Colloid Interface Sci. 2021 Nov 15;602:242-250. doi: 10.1016/j.jcis.2021.06.006. Epub 2021 Jun 4.

Abstract

In our work, CoMn-MOF-74 precursors are prepared with rough surface by etching method, and a large number of Co@C@MnO heterogeneous interfaces are engineered via a facile calcination process. By adjusting the etching time, the microstructures of the precursors can be tuned, resulting in a different number of heterogeneous interfaces between Co, carbon and MnO in the Co@C@MnO nanorods. Therefore, the Co@C@MnO nanorods achieve excellent EMW absorption performance, which can be attributed to the enhancement of dielectric loss induced by the enhanced interfacial polarization loss. Besides, the conduction loss and the multiple reflection induced by the porous carbon can enhance the dissipation of electromagnetic wave. The existence of Co nanoparticles is also conducive to the dissipation of electromagnetic wave by enhancing magnetic loss. The MnO@C nanorods with porous structures exhibit significantly enhanced electromagnetic wave absorption properties with the filler loading of 20 wt%, and a maximum reflection loss (RL) of -64.4 dB, and the bandwidth of RL less than -10 dB (90% absorption) is 6.7 GHz. Our work is expected to improve the specific surface area of MOFs precursors by etching method, thus making their derivatives have complex compositions and novel structures to achieve excellent electromagnetic wave absorption properties.

摘要

在我们的工作中,通过蚀刻法制备了具有粗糙表面的CoMn-MOF-74前驱体,并通过简便的煅烧过程构建了大量的Co@C@MnO异质界面。通过调整蚀刻时间,可以调节前驱体的微观结构,从而在Co@C@MnO纳米棒中产生不同数量的Co、碳和MnO之间的异质界面。因此,Co@C@MnO纳米棒具有优异的电磁波吸收性能,这可归因于界面极化损耗增强所引起的介电损耗的增强。此外,多孔碳引起的传导损耗和多次反射可增强电磁波的耗散。Co纳米颗粒的存在也有利于通过增强磁损耗来耗散电磁波。具有多孔结构的MnO@C纳米棒在填料负载量为20 wt%时表现出显著增强的电磁波吸收性能,最大反射损耗(RL)为-64.4 dB,RL小于-10 dB(90%吸收)的带宽为6.7 GHz。我们的工作有望通过蚀刻法提高MOF前驱体的比表面积,从而使其衍生物具有复杂的组成和新颖的结构,以实现优异的电磁波吸收性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验