Judd Laura M, Al-Saadi Jassim A, Szykman James J, Valin Lukas C, Janz Scott J, Kowalewski Matthew G, Eskes Henk J, Veefkind J Pepijn, Cede Alexander, Mueller Moritz, Gebetsberger Manuel, Swap Robert, Pierce R Bradley, Nowlan Caroline R, Abad Gonzalo González, Nehrir Amin, Williams David
NASA Langley Research Center, Hampton, VA 23681, USA.
Office of Research and Development, United States Environmental Protection Agency, Triangle Research Park, NC 27709, USA.
Atmos Meas Tech. 2020 Nov 17;13(11):6113-6140. doi: 10.5194/amt-13-6113-2020.
Airborne and ground-based Pandora spectrometer NO column measurements were collected during the 2018 Long Island Sound Tropospheric Ozone Study (LISTOS) in the New York City/Long Island Sound region, which coincided with early observations from the Sentinel-5P TROPOspheric Monitoring Instrument (TROPOMI) instrument. Both airborne- and ground-based measurements are used to evaluate the TROPOMI NO Tropospheric Vertical Column (TrVC) product v1.2 in this region, which has high spatial and temporal heterogeneity in NO. First, airborne and Pandora TrVCs are compared to evaluate the uncertainty of the airborne TrVC and establish the spatial representativeness of the Pandora observations. The 171 coincidences between Pandora and airborne TrVCs are found to be highly correlated ( =0.92 and slope of 1.03), with the largest individual differences being associated with high temporal and/or spatial variability. These reference measurements (Pandora and airborne) are complementary with respect to temporal coverage and spatial representativity. Pandora spectrometers can provide continuous long-term measurements but may lack areal representativity when operated in direct-sun mode. Airborne spectrometers are typically only deployed for short periods of time, but their observations are more spatially representative of the satellite measurements with the added capability of retrieving at subpixel resolutions of 250m×250m over the entire TROPOMI pixels they overfly. Thus, airborne data are more correlated with TROPOMI measurements ( = 0.96) than Pandora measurements are with TROPOMI ( = 0.84). The largest outliers between TROPOMI and the reference measurements appear to stem from too spatially coarse a priori surface reflectivity (0.5°) over bright urban scenes. In this work, this results during cloud-free scenes that, at times, are affected by errors in the TROPOMI cloud pressure retrieval impacting the calculation of tropospheric air mass factors. This factor causes a high bias in TROPOMI TrVCs of 4%-11%. Excluding these cloud-impacted points, TROPOMI has an overall low bias of 19%-33% during the LISTOS timeframe of June-September 2018. Part of this low bias is caused by coarse a priori profile input from the TM5-MP model; replacing these profiles with those from a 12 km North American Model-Community Multiscale Air Quality (NAMCMAQ) analysis results in a 12%-14% increase in the TrVCs. Even with this improvement, the TROPOMI-NAMCMAQ TrVCs have a 7%-19% low bias, indicating needed improvement in a priori assumptions in the air mass factor calculation. Future work should explore additional impacts of a priori inputs to further assess the remaining low biases in TROPOMI using these datasets.
在2018年纽约市/长岛海峡地区的长岛海峡对流层臭氧研究(LISTOS)期间,收集了机载和地面潘多拉光谱仪的一氧化氮柱测量数据,这与哨兵-5P对流层监测仪器(TROPOMI)的早期观测数据相吻合。在该地区,一氧化氮具有高度的时空异质性,机载和地面测量数据均用于评估TROPOMI一氧化氮对流层垂直柱(TrVC)产品v1.2。首先,将机载和潘多拉TrVC进行比较,以评估机载TrVC的不确定性,并确定潘多拉观测数据的空间代表性。发现潘多拉和机载TrVC之间的171个重合点具有高度相关性(相关系数=0.92,斜率为1.03),最大的个体差异与高时间和/或空间变异性相关。这些参考测量(潘多拉和机载)在时间覆盖范围和空间代表性方面具有互补性。潘多拉光谱仪可以提供连续的长期测量数据,但在直射阳光模式下运行时可能缺乏区域代表性。机载光谱仪通常仅部署较短时间,但其观测数据在空间上更能代表卫星测量数据,并且具有在其飞越的整个TROPOMI像素上以250m×250m亚像素分辨率进行反演的能力。因此,机载数据与TROPOMI测量数据的相关性(相关系数=0.96)高于潘多拉测量数据与TROPOMI的相关性(相关系数=0.84)。TROPOMI与参考测量数据之间最大的异常值似乎源于明亮城市场景上空间分辨率过粗的先验地表反射率(0.5°)。在这项工作中,这导致在无云场景中,有时会受到TROPOMI云压力反演误差的影响,从而影响对流层空气质量因子的计算。这个因素导致TROPOMI TrVCs出现4%-11%的高偏差。排除这些受云影响的点后,在2018年6月至9月的LISTOS时间段内,TROPOMI的总体低偏差为19%-33%。这种低偏差部分是由TM5-MP模型输入的先验剖面粗糙所致;用来自12公里北美模型-社区多尺度空气质量(NAMCMAQ)分析的剖面替换这些剖面,TrVCs增加了12%-14%。即使有了这种改进,TROPOMI-NAMCMAQ TrVCs仍有7%-19%的低偏差,这表明在空气质量因子计算的先验假设方面仍需改进。未来的工作应探索先验输入的其他影响,以进一步利用这些数据集评估TROPOMI中剩余的低偏差。