Anderson Samantha L, Tiana Davide, Ireland Christopher P, Capano Gloria, Fumanal Maria, Gładysiak Andrzej, Kampouri Stavroula, Rahmanudin Aiman, Guijarro Néstor, Sivula Kevin, Stylianou Kyriakos C, Smit Berend
Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Valais Ecole Polytechnique Fédérale de Lausanne (EPFL) Rue de l'Industrie 17 CH-1951 Sion Switzerland
School of Chemistry, University College Cork College Rd Cork Ireland.
Chem Sci. 2020 Mar 20;11(16):4164-4170. doi: 10.1039/d0sc00740d.
Metal organic frameworks (MOFs) are increasingly used in applications that rely on the optical and electronic properties of these materials. These applications require a fundamental understanding on how the structure of these materials, and in particular the electronic interactions of the metal node and organic linker, determines these properties. Herein, we report a combined experimental and computational study on two families of lanthanide-based MOFs: Ln-SION-1 and Ln-SION-2. Both comprise the same metal and ligand but with differing structural topologies. In the Ln-SION-2 series the optical absorption is dominated by the ligand and using different lanthanides has no impact on the absorption spectrum. The Ln-SION-1 series shows a completely different behavior in which the ligand and the metal node do interact electronically. By changing the lanthanide in Ln-SION-1, we were able to tune the optical absorption from the UV region to absorption that includes a large part of the visible region. For the early lanthanides we observe intraligand (electronic) transitions in the UV region, while for the late lanthanides a new band appears in the visible. DFT calculations showed that the new band in the visible originates in the spatial orbital overlap between the ligand and metal node. Our quantum calculations indicated that Ln-SION-1 with late lanthanides might be (photo)conductive. Experimentally, we confirm that these materials are weakly conductive and that with an appropriate co-catalysts they can generate hydrogen from a water solution using visible light. Our experimental and theoretical analysis provides fundamental insights for the rational design of Ln-MOFs with the desired optical and electronic properties.
金属有机框架(MOFs)越来越多地应用于依赖这些材料光学和电子特性的领域。这些应用需要深入了解这些材料的结构,特别是金属节点和有机连接体的电子相互作用如何决定这些特性。在此,我们报告了对两类基于镧系元素的MOFs:Ln-SION-1和Ln-SION-2的实验与计算相结合的研究。两者都包含相同的金属和配体,但具有不同的结构拓扑。在Ln-SION-2系列中,光吸收主要由配体主导,使用不同的镧系元素对吸收光谱没有影响。Ln-SION-1系列表现出完全不同的行为,其中配体和金属节点确实存在电子相互作用。通过改变Ln-SION-1中的镧系元素,我们能够将光吸收从紫外区域调谐到包括大部分可见光区域的吸收。对于早期镧系元素,我们在紫外区域观察到配体内(电子)跃迁,而对于晚期镧系元素,在可见光区域出现了一个新的谱带。密度泛函理论(DFT)计算表明,可见光区域的新谱带源于配体和金属节点之间的空间轨道重叠。我们的量子计算表明,含有晚期镧系元素的Ln-SION-1可能具有(光)导电性。实验上,我们证实这些材料导电性较弱,并且在合适的共催化剂存在下,它们可以利用可见光从水溶液中产生氢气。我们的实验和理论分析为合理设计具有所需光学和电子特性的镧系金属有机框架提供了基本见解。