Suppr超能文献

SyntaLinker:基于深度条件变压器神经网络的自动片段链接

SyntaLinker: automatic fragment linking with deep conditional transformer neural networks.

作者信息

Yang Yuyao, Zheng Shuangjia, Su Shimin, Zhao Chao, Xu Jun, Chen Hongming

机构信息

Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle at University City Guangzhou 510006 China

Center of Chemistry and Chemical Biology, Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou 510530 China

出版信息

Chem Sci. 2020 Jul 22;11(31):8312-8322. doi: 10.1039/d0sc03126g.

Abstract

Linking fragments to generate a focused compound library for a specific drug target is one of the challenges in fragment-based drug design (FBDD). Hereby, we propose a new program named SyntaLinker, which is based on a syntactic pattern recognition approach using deep conditional transformer neural networks. This state-of-the-art transformer can link molecular fragments automatically by learning from the knowledge of structures in medicinal chemistry databases ( ChEMBL database). Conventionally, linking molecular fragments was viewed as connecting substructures that were predefined by empirical rules. In SyntaLinker, however, the rules of linking fragments can be learned implicitly from known chemical structures by recognizing syntactic patterns embedded in SMILES notations. With deep conditional transformer neural networks, SyntaLinker can generate molecular structures based on a given pair of fragments and additional restrictions. Case studies have demonstrated the advantages and usefulness of SyntaLinker in FBDD.

摘要

将片段连接起来以生成针对特定药物靶点的聚焦化合物库是基于片段的药物设计(FBDD)中的挑战之一。在此,我们提出了一个名为SyntaLinker的新程序,它基于一种使用深度条件变压器神经网络的句法模式识别方法。这种先进的变压器可以通过从药物化学数据库(ChEMBL数据库)中的结构知识进行学习来自动连接分子片段。传统上,连接分子片段被视为连接由经验规则预先定义的子结构。然而,在SyntaLinker中,连接片段的规则可以通过识别嵌入在SMILES符号中的句法模式从已知化学结构中隐式学习。借助深度条件变压器神经网络,SyntaLinker可以基于给定的一对片段和附加限制生成分子结构。案例研究已经证明了SyntaLinker在FBDD中的优势和实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4afc/8163338/5592634ed9cf/d0sc03126g-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验