Suppr超能文献

基于深度学习的自由呼吸加速心脏 MRI:在儿童和青年中的验证。

Free-breathing Accelerated Cardiac MRI Using Deep Learning: Validation in Children and Young Adults.

机构信息

From the Department of Radiology, Stanford University School of Medicine, 725 Welch Rd, Stanford, CA 94305 (E.J.Z., A.K., S.S.V.); Department of Electrical Engineering, Stanford University, Stanford, Calif (C.M.S.); and Global MR Applications and Workflow, GE Healthcare, Menlo Park, Calif (P.L.).

出版信息

Radiology. 2021 Sep;300(3):539-548. doi: 10.1148/radiol.2021202624. Epub 2021 Jun 15.

Abstract

Background Obtaining ventricular volumetry and mass is key to most cardiac MRI but challenged by long multibreath-hold acquisitions. Purpose To assess the image quality and performance of a highly accelerated, free-breathing, two-dimensional cine cardiac MRI sequence incorporating deep learning (DL) reconstruction compared with reference standard balanced steady-state free precession (bSSFP). Materials and Methods A DL algorithm was developed to reconstruct custom 12-fold accelerated bSSFP cardiac MRI cine images from coil sensitivity maps using 15 iterations of separable three-dimensional convolutions and data consistency steps. The model was trained, validated, and internally tested in 10, two, and 10 adult human volunteers, respectively, based on vendor partner-supplied fully sampled bSSFP acquisitions. For prospective external clinical validation, consecutive children and young adults undergoing cardiac MRI from September through December 2019 at a single children's hospital underwent both conventional and highly accelerated short-axis bSSFP cine acquisitions in one MRI examination. Two radiologists scored overall and volumetric three-dimensional mesh image quality of all short-axis stacks on a five-point Likert scale and manually segmented endocardial and epicardial contours. Scan times and image quality were compared using the Wilcoxon rank sum test. Measurement agreement was assessed with intraclass correlation coefficient and Bland-Altman analysis. Results Fifty participants (mean age, 16 years ± 4 [standard deviation]; range, 5-30 years; 29 men) were evaluated. The mean prescribed acquisition times of accelerated scans (non-breath-held) and bSSFP (excluding breath-hold time) were 0.9 minute ± 0.3 versus 3.0 minutes ± 1.9 ( < .001). Overall and three-dimensional mesh image quality scores were, respectively, 3.8 ± 0.6 versus 4.3 ± 0.6 ( < .001) and 4.0 ± 1.0 versus 4.4 ± 0.8 ( < .001). Raters had strong agreement between all bSSFP and DL measurements, with intraclass correlation coefficients of 0.76 to 0.97, near-zero mean differences, and narrow limits of agreement. Conclusion With slightly lower image quality yet much faster speed, deep learning reconstruction may allow substantially shorter acquisition times of cardiac MRI compared with conventional balanced steady-state free precession MRI performed for ventricular volumetry. © RSNA, 2021

摘要

背景 获取心室容积和质量是大多数心脏 MRI 的关键,但由于需要长时间的多呼吸暂停采集而受到挑战。目的 评估一种高度加速、自由呼吸的二维电影心脏 MRI 序列的图像质量和性能,该序列结合了深度学习(DL)重建,与参考标准的平衡稳态自由进动(bSSFP)进行比较。材料与方法 开发了一种 DL 算法,用于使用 15 次可分离三维卷积和数据一致性步骤,从线圈灵敏度图重建自定义 12 倍加速的 bSSFP 心脏 MRI 电影图像。该模型分别在 10 名、2 名和 10 名成人志愿者中进行了培训、验证和内部测试,这些志愿者均基于供应商合作伙伴提供的完全采样的 bSSFP 采集。为了进行前瞻性的外部临床验证,2019 年 9 月至 12 月,在一家儿童医院接受心脏 MRI 的连续儿童和年轻成年人在一次 MRI 检查中同时进行常规和高度加速的短轴 bSSFP 电影采集。两位放射科医生使用 5 分制 Likert 量表对所有短轴堆栈的整体和容积三维网格图像质量进行评分,并手动分割心内膜和心外膜轮廓。使用 Wilcoxon 秩和检验比较扫描时间和图像质量。使用组内相关系数和 Bland-Altman 分析评估测量一致性。结果 共评估了 50 名参与者(平均年龄,16 岁±4[标准差];范围,5-30 岁;29 名男性)。加速扫描(非屏气)和 bSSFP(不包括屏气时间)的平均规定采集时间分别为 0.9 分钟±0.3 与 3.0 分钟±1.9(<.001)。整体和三维网格图像质量评分分别为 3.8±0.6 与 4.3±0.6(<.001)和 4.0±1.0 与 4.4±0.8(<.001)。评分者在所有 bSSFP 和 DL 测量值之间具有很强的一致性,组内相关系数为 0.76 至 0.97,平均差异接近零,且一致性界限较窄。结论 与传统的用于心室容积的平衡稳态自由进动 MRI 相比,深度学习重建可能允许心脏 MRI 的采集时间大大缩短,尽管图像质量略低,但速度却快得多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2109/8409103/eea46acfcb69/radiol.2021202624.va.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验