Suppr超能文献

细化 Kv4 通道在小鼠黑质多巴胺能神经元中的身份和作用。

Refining the Identity and Role of Kv4 Channels in Mouse Substantia Nigra Dopaminergic Neurons.

机构信息

Unité Mixte de Recherche 1072, Aix Marseille University, Institut National de la Santé et de la Recherche Médicale, Faculté de Médecine Secteur Nord, Marseille 13015, FRANCE.

Unité Mixte de Recherche 7291, Aix Marseille University, Centre National de la Recherche Scientifique, Laboratoire de Neurosciences Cognitives, Marseille 13331, France.

出版信息

eNeuro. 2021 Jul 20;8(4). doi: 10.1523/ENEURO.0207-21.2021. Print 2021 Jul-Aug.

Abstract

Substantia nigra pars compacta (SNc) dopaminergic (DA) neurons display a peculiar electrical phenotype characterized by a spontaneous tonic regular activity (pacemaking activity), a broad action potential (AP) and a biphasic postinhibitory response. The transient A-type current (I) is known to play a crucial role in this electrical phenotype, and so far, this current was considered to be carried exclusively by Kv4.3 potassium channels. Using Kv4.3-/- transgenic mice, we demonstrate that the constitutive loss of this channel is associated with increased exploratory behavior and impaired motor learning at the behavioral level. Consistently, it is also associated with a lack of compensatory changes in other ion currents at the cellular level. Using antigen retrieval (AR) immunohistochemistry, we then demonstrate that Kv4.2 potassium channels are also expressed in SNc DA neurons, although their contribution to I appears significant only in a minority of neurons (∼5-10%). Using correlative analysis on recorded electrophysiological parameters and multicompartment modeling, we then demonstrate that, rather than its conductance level, I gating kinetics (inactivation time constant) appear as the main biophysical property defining postinhibitory rebound delay and pacemaking frequency. Moreover, we show that the hyperpolarization-activated current (I) has an opposing and complementary influence on the same firing features.

摘要

黑质致密部(SNc)多巴胺能(DA)神经元表现出一种特殊的电生理表型,其特征为自发性紧张性规则活动(起搏活动)、宽动作电位(AP)和双相后抑制反应。瞬时 A 型电流(I)被认为在这种电生理表型中起着至关重要的作用,迄今为止,这种电流被认为仅由 Kv4.3 钾通道携带。使用 Kv4.3-/-转基因小鼠,我们证明了该通道的组成性缺失与行为水平上的探索行为增加和运动学习受损有关。一致地,它也与细胞水平上其他离子电流缺乏代偿性变化有关。然后,我们使用抗原检索(AR)免疫组织化学证明 Kv4.2 钾通道也在 SNc DA 神经元中表达,尽管它们对 I 的贡献仅在少数神经元(约 5-10%)中显著。通过对记录的电生理参数和多室模型进行相关分析,我们然后证明,与其电导水平相比,I 门控动力学(失活时间常数)似乎是定义后抑制反弹延迟和起搏频率的主要生物物理特性。此外,我们表明,超极化激活电流(I)对相同的放电特征具有相反和互补的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0650/8293280/7c5f5a9d1531/ENEURO.0207-21.2021_f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验