Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India.
Industrial Ecology Research Group, School of Chemical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
Biotechnol J. 2021 Sep;16(9):e2100136. doi: 10.1002/biot.202100136. Epub 2021 Jun 23.
Microbial polyhydroxyalkanoates (PHAs) produced using renewable resources could be the best alternative for conventional plastics. Despite their incredible potential, commercial production of PHAs remains very low. Nevertheless, sincere attempts have been made by researchers to improve the yield and economic viability of PHA production by utilizing low-cost agricultural or industrial wastes. In this context, the use of efficient microbial culture or consortia, adoption of experimental design to trace ideal growth conditions, nutritional requirements, and intervention of metabolic engineering tools have gained significant attention.
This review has been structured to highlight the important microbial sources for PHA production, use of conventional and non-conventional substrates, product optimization using experimental design, metabolic engineering strategies, and global players in the commercialization of PHA in the past two decades. The challenges about PHA recovery and analysis have also been discussed which possess indirect hurdle while expanding the horizon of PHA-based bioplastics.
Selection of appropriate microorganism and substrate plays a vital role in improving the productivity and characteristics of PHAs. Experimental design-based bioprocess, use of metabolic engineering tools, and optimal product recovery techniques are invaluable in this dimension.
Optimization strategies, which are being explored in isolation, need to be logically integrated for the successful commercialization of microbial PHAs.
利用可再生资源生产的微生物聚羟基脂肪酸酯(PHA)可能是传统塑料的最佳替代品。尽管它们具有令人难以置信的潜力,但 PHA 的商业生产仍然非常低。尽管如此,研究人员还是真诚地尝试利用低成本的农业或工业废物来提高 PHA 生产的产量和经济可行性。在这种情况下,利用高效的微生物培养物或联合体、采用实验设计来追踪理想的生长条件、营养需求以及干预代谢工程工具已经引起了极大的关注。
本综述的结构旨在强调 PHA 生产的重要微生物来源、传统和非常规底物的使用、使用实验设计进行产品优化、代谢工程策略以及过去二十年中 PHA 商业化的全球参与者。还讨论了 PHA 回收和分析的挑战,这在扩大基于 PHA 的生物塑料的前景方面存在间接障碍。
选择合适的微生物和底物对于提高 PHAs 的生产力和特性至关重要。基于实验设计的生物工艺、代谢工程工具的使用以及最佳产品回收技术在这方面具有不可估量的价值。
需要将正在单独探索的优化策略进行逻辑整合,以实现微生物 PHA 的成功商业化。