Suppr超能文献

基于机器学习的材料性能相关性分析:以稀面心立方基合金第一性原理计算的堆垛层错能为例

Correlation analysis of materials properties by machine learning: illustrated with stacking fault energy from first-principles calculations in dilute fcc-based alloys.

作者信息

Chong Xiaoyu, Shang Shun-Li, Krajewski Adam M, Shimanek John D, Du Weihang, Wang Yi, Feng Jing, Shin Dongwon, Beese Allison M, Liu Zi-Kui

机构信息

Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China.

Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, United States of America.

出版信息

J Phys Condens Matter. 2021 Jun 14;33(29). doi: 10.1088/1361-648X/ac0195.

Abstract

Advances in machine learning (ML), especially in the cooperation between ML predictions, density functional theory (DFT) based first-principles calculations, and experimental verification are emerging as a key part of a new paradigm to understand fundamentals, verify, analyze, and predict data, and design and discover materials. Taking stacking fault energy () as an example, we perform a correlation analysis ofin dilute Al-, Ni-, and Pt-based alloys by descriptors and ML algorithms. Thesevalues were predicted by DFT-based alias shear deformation approach, and up to 49 elemental descriptors and 21 regression algorithms were examined. The present work indicates that (i) the variation ofaffected by alloying elements can be quantified through 14 elemental attributes based on their statistical significances to decrease the mean absolute error (MAE) in ML predictions, and in particular, the number of p valence electrons, a descriptor second only to the covalent radius in importance to model performance, is unexpected; (ii) the alloys with elements close to Ni and Co in the periodic table possess highervalues; (iii) the top four outliers of DFT predictions ofare for the alloys of AlLa, PtAu, NiCo, and AlBe based on the analyses of statistical differences between DFT and ML predictions; and (iv) the best ML model to predictis produced by Gaussian process regression with an average MAE < 8 mJ m. Beyond detailed analysis of the Al-, Ni-, and Pt-based alloys, we also predict thevalues using the present ML models in other fcc-based dilute alloys (i.e., Cu, Ag, Au, Rh, Pd, and Ir) with the expected MAE < 17 mJ mand observe similar effects of alloying elements onas those in PtX or NiX.

摘要

机器学习(ML)的进展,特别是在ML预测、基于密度泛函理论(DFT)的第一性原理计算以及实验验证之间的合作方面,正成为理解基本原理、验证、分析和预测数据以及设计和发现材料的新范式的关键部分。以堆垛层错能( )为例,我们通过描述符和ML算法对稀Al基、Ni基和Pt基合金中的 进行了相关性分析。这些 值是通过基于DFT的别名剪切变形方法预测的,并且研究了多达49个元素描述符和21种回归算法。目前的工作表明:(i)基于合金元素对 的影响的统计显著性,可以通过14个元素属性来量化,以降低ML预测中的平均绝对误差(MAE),特别是p价电子数,这是一个对模型性能重要性仅次于共价半径的描述符,出人意料;(ii)在元素周期表中与Ni和Co接近的元素组成的合金具有更高的 值;(iii)基于DFT和ML预测之间的统计差异分析,DFT预测 的前四个异常值是AlLa、PtAu、NiCo和AlBe合金;(iv)预测 的最佳ML模型是由高斯过程回归产生的,平均MAE < 8 mJ m 。除了对Al基、Ni基和Pt基合金进行详细分析外,我们还使用当前的ML模型预测了其他面心立方(fcc)基稀合金(即Cu、Ag、Au、Rh、Pd和Ir)中的 值,预期MAE < 17 mJ m ,并观察到合金元素对 的影响与PtX或NiX中的类似。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验