Suppr超能文献

基于带有梯度加权类激活映射的三维卷积神经网络的全乳照射临床靶区勾画研究。

Investigation of clinical target volume segmentation for whole breast irradiation using three-dimensional convolutional neural networks with gradient-weighted class activation mapping.

机构信息

Department of Epidemiology and Environmental Health, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.

Department of Radiation Oncology, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.

出版信息

Radiol Phys Technol. 2021 Sep;14(3):238-247. doi: 10.1007/s12194-021-00620-8. Epub 2021 Jun 16.

Abstract

This study aims to implement three-dimensional convolutional neural networks (3D-CNN) for clinical target volume (CTV) segmentation for whole breast irradiation and investigate the focus of 3D-CNNs during decision-making using gradient-weighted class activation mapping (Grad-CAM). A 3D-UNet CNN was adopted to conduct automatic segmentation of the CTV for breast cancer. The 3D-UNet was trained using three datasets of left-, right-, and both left- and right-sided breast cancer patients. Segmentation accuracy was evaluated using the Dice similarity coefficient (DSC). Grad-CAM was applied to trained CNNs. The DSCs for the datasets of the left-, right-, and both left- and right-sided breasts were on an average 0.88, 0.89, and 0.85, respectively. The Grad-CAM heatmaps showed that the 3D-UNet used for segmentation determined the CTV region from the target-side breast tissue and by referring to the opposite-side breast. Although the size of the dataset was limited, DSC ≥ 0.85 was achieved for the segmentation of breast CTV using the 3D-UNet. Grad-CAM indicates the applicable scope and limitations of using a CNN by indicating the focus of such networks during decision-making.

摘要

本研究旨在应用三维卷积神经网络(3D-CNN)对全乳照射的临床靶区(CTV)进行分割,并利用梯度加权类激活映射(Grad-CAM)研究 3D-CNN 在决策过程中的关注点。采用 3D-UNet CNN 对乳腺癌的 CTV 进行自动分割。3D-UNet 使用三组左侧、右侧和左右两侧乳腺癌患者的数据进行训练。使用 Dice 相似系数(DSC)评估分割准确性。将 Grad-CAM 应用于训练好的 CNN。左侧、右侧和左右两侧乳房数据集的 DSC 平均值分别为 0.88、0.89 和 0.85。Grad-CAM 热图显示,用于分割的 3D-UNet 从目标侧乳腺组织和对侧乳腺确定 CTV 区域。尽管数据集的规模有限,但使用 3D-UNet 对乳腺 CTV 的分割仍达到了 DSC≥0.85。Grad-CAM 通过指示 CNN 在决策过程中的关注点,表明了使用 CNN 的适用范围和局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验