Suppr超能文献

基于低成本传感器网络观测的 PM2.5、NO 和 CO 日浓度的空间建模:线性、机器学习和混合土地利用模型的比较。

Spatial Modeling of Daily PM, NO, and CO Concentrations Measured by a Low-Cost Sensor Network: Comparison of Linear, Machine Learning, and Hybrid Land Use Models.

机构信息

Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.

Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.

出版信息

Environ Sci Technol. 2021 Jul 6;55(13):8631-8641. doi: 10.1021/acs.est.1c02653. Epub 2021 Jun 16.

Abstract

Previous studies have characterized spatial patterns of pollution with land use regression (LUR) models from distributed passive or filter samplers at low temporal resolution. Large-scale deployment of low-cost sensors (LCS), which typically sample in real time, may enable time-resolved or real-time modeling of concentration surfaces. The aim of this study was to develop spatiotemporal models of PM, NO, and CO using an LCS network in Pittsburgh, Pennsylvania. We modeled daily average concentrations in August 2016-December 2017 across 50 sites. Land use variables included 13 time-independent (e.g., elevation) and time-dependent (e.g., temperature) predictors. We examined two models: LUR and a machine-learning-enabled land use model (land use random forest, LURF). The LURF models outperformed LUR models, with increase in the average externally cross-validated of 0.10-0.19. Using wavelet decomposition to separate short-lived events from the regional background, we also created time-decomposed LUR and LURF models. Compared to the standard model, this resulted in improvement in of up to 0.14. The time-decomposed models were more influenced by spatial parameters. Mapping our models across Allegheny County, we observed that time-decomposed LURF models created robust PM predictions, suggesting that this approach may improve our ability to map air pollutants at high spatiotemporal resolution.

摘要

先前的研究已经使用分布式被动或滤膜采样器的土地利用回归 (LUR) 模型从低时间分辨率的角度描述了污染的空间模式。低成本传感器 (LCS) 的大规模部署通常可以实时采样,这可能使浓度表面的时间分辨或实时建模成为可能。本研究的目的是使用宾夕法尼亚州匹兹堡的 LCS 网络开发 PM、NO 和 CO 的时空模型。我们在 2016 年 8 月至 2017 年 12 月期间在 50 个站点上对每日平均浓度进行建模。土地利用变量包括 13 个时间独立 (例如海拔) 和时间相关 (例如温度) 的预测因子。我们检查了两种模型:LUR 和一种基于机器学习的土地利用模型(土地利用随机森林,LURF)。LURF 模型的性能优于 LUR 模型,平均外部交叉验证 的提高了 0.10-0.19。通过使用小波分解将短期事件与区域背景分开,我们还创建了时间分解的 LUR 和 LURF 模型。与标准模型相比,这导致 的提高高达 0.14。时间分解模型受空间参数的影响更大。在阿勒格尼县绘制我们的模型时,我们观察到时间分解的 LURF 模型对 PM 进行了可靠的预测,这表明这种方法可能会提高我们以高时空分辨率绘制空气污染物的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验