Lippolis Domenico, Shudo Akira, Yoshida Kensuke, Yoshino Hajime
Institute for Applied Systems Analysis, Jiangsu University, Zhenjiang 212013, China.
Department of Physics, Tokyo Metropolitan University, Minami-Osawa, Hachioji 192-0397, Japan.
Phys Rev E. 2021 May;103(5):L050202. doi: 10.1103/PhysRevE.103.L050202.
We report the numerical observation of scarring, which is enhancement of probability density around unstable periodic orbits of a chaotic system, in the eigenfunctions of the classical Perron-Frobenius operator of noisy Anosov ("perturbed cat") maps, as well as in the noisy Bunimovich stadium. A parallel is drawn between classical and quantum scars, based on the unitarity or nonunitarity of the respective propagators. For uniformly hyperbolic systems such as the cat map, we provide a mechanistic explanation for the classical phase-space localization detected, based on the distribution of finite-time Lyapunov exponents, and the interplay of noise with deterministic dynamics. Classical scarring can be measured by studying autocorrelation functions and their power spectra.
我们报告了在有噪声的阿诺索夫(“扰动猫”)映射的经典佩龙 - 弗罗贝尼乌斯算子的本征函数中,以及在有噪声的布尼莫维奇体育场中,对疤痕形成的数值观测结果,疤痕形成表现为混沌系统不稳定周期轨道周围概率密度的增强。基于各自传播子的幺正性或非幺正性,对经典疤痕和量子疤痕进行了比较。对于诸如猫映射这样的一致双曲系统,我们基于有限时间李雅普诺夫指数的分布以及噪声与确定性动力学的相互作用,为检测到的经典相空间局域化提供了一种机理解释。经典疤痕可以通过研究自相关函数及其功率谱来测量。