Suppr超能文献

带噪声的经典混沌动力学中的疤痕形成。

Scarring in classical chaotic dynamics with noise.

作者信息

Lippolis Domenico, Shudo Akira, Yoshida Kensuke, Yoshino Hajime

机构信息

Institute for Applied Systems Analysis, Jiangsu University, Zhenjiang 212013, China.

Department of Physics, Tokyo Metropolitan University, Minami-Osawa, Hachioji 192-0397, Japan.

出版信息

Phys Rev E. 2021 May;103(5):L050202. doi: 10.1103/PhysRevE.103.L050202.

Abstract

We report the numerical observation of scarring, which is enhancement of probability density around unstable periodic orbits of a chaotic system, in the eigenfunctions of the classical Perron-Frobenius operator of noisy Anosov ("perturbed cat") maps, as well as in the noisy Bunimovich stadium. A parallel is drawn between classical and quantum scars, based on the unitarity or nonunitarity of the respective propagators. For uniformly hyperbolic systems such as the cat map, we provide a mechanistic explanation for the classical phase-space localization detected, based on the distribution of finite-time Lyapunov exponents, and the interplay of noise with deterministic dynamics. Classical scarring can be measured by studying autocorrelation functions and their power spectra.

摘要

我们报告了在有噪声的阿诺索夫(“扰动猫”)映射的经典佩龙 - 弗罗贝尼乌斯算子的本征函数中,以及在有噪声的布尼莫维奇体育场中,对疤痕形成的数值观测结果,疤痕形成表现为混沌系统不稳定周期轨道周围概率密度的增强。基于各自传播子的幺正性或非幺正性,对经典疤痕和量子疤痕进行了比较。对于诸如猫映射这样的一致双曲系统,我们基于有限时间李雅普诺夫指数的分布以及噪声与确定性动力学的相互作用,为检测到的经典相空间局域化提供了一种机理解释。经典疤痕可以通过研究自相关函数及其功率谱来测量。

相似文献

1
Scarring in classical chaotic dynamics with noise.
Phys Rev E. 2021 May;103(5):L050202. doi: 10.1103/PhysRevE.103.L050202.
2
Localization properties of groups of eigenstates in chaotic systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Jun;63(6 Pt 2):066220. doi: 10.1103/PhysRevE.63.066220. Epub 2001 May 29.
3
Thermodynamics of chaotic relaxation processes.
Phys Rev E. 2024 Aug;110(2-1):024215. doi: 10.1103/PhysRevE.110.024215.
4
Spectral properties of dissipative chaotic quantum maps.
Chaos. 1999 Sep;9(3):730-737. doi: 10.1063/1.166447.
5
Numerical analysis of spectra of the Frobenius-Perron operator of a noisy one-dimensional mapping: toward a theory of stochastic bifurcations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Nov;64(5 Pt 2):056219. doi: 10.1103/PhysRevE.64.056219. Epub 2001 Oct 23.
7
Frobenius-perron resonances for maps with a mixed phase space.
Phys Rev Lett. 2000 Oct 23;85(17):3620-3. doi: 10.1103/PhysRevLett.85.3620.
8
Scarring in open quantum systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Apr;77(4 Pt 2):045201. doi: 10.1103/PhysRevE.77.045201. Epub 2008 Apr 15.
9
Semiclassical approach to long time propagation in quantum chaos: predicting scars.
Phys Rev Lett. 2012 Jun 29;108(26):264101. doi: 10.1103/PhysRevLett.108.264101. Epub 2012 Jun 26.
10
Analyses of transient chaotic time series.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Nov;64(5 Pt 2):056207. doi: 10.1103/PhysRevE.64.056207. Epub 2001 Oct 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验