Rusby D R, King P M, Pak A, Lemos N, Kerr S, Cochran G, Pagano I, Hannasch A, Quevedo H, Spinks M, Donovan M, Link A, Kemp A, Wilks S C, Williams G J, Manuel M J-E, Gavin Z, Haid A, Albert F, Aufderheide M, Chen H, Siders C W, Macphee A, Mackinnon A
Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA.
Phys Rev E. 2021 May;103(5-1):053207. doi: 10.1103/PhysRevE.103.053207.
We report on the increase in the accelerated electron number and energy using compound parabolic concentrator (CPC) targets from a short-pulse (∼150 fs), high-intensity (>10^{18} W/cm^{2}), and high-contrast (∼10^{8}) laser-solid interaction. We report on experimental measurements using CPC targets where the hot-electron temperature is enhanced up to ∼9 times when compared to planar targets. The temperature measured from the CPC target is 〈T_{e}〉=4.4±1.3 MeV. Using hydrodynamic and particle in cell simulations, we identify the primary source of this temperature enhancement is the intensity increase caused by the CPC geometry that focuses the laser, reducing the focal spot and therefore increasing the intensity of the laser-solid interaction, which is also consistent with analytic expectations for the geometrical focusing.
我们报告了在短脉冲(约150飞秒)、高强度(>10^{18}瓦/平方厘米)和高对比度(约10^{8})激光与固体相互作用中,使用复合抛物面聚光器(CPC)靶时加速电子数量和能量的增加情况。我们报告了使用CPC靶的实验测量结果,与平面靶相比,CPC靶的热电子温度提高了约9倍。从CPC靶测量得到的温度为〈T_{e}〉=4.4±1.3兆电子伏特。通过流体动力学和粒子模拟,我们确定这种温度升高的主要来源是CPC几何形状导致的强度增加,该形状聚焦了激光,减小了焦斑,从而增加了激光与固体相互作用的强度,这也与几何聚焦的解析预期一致。