International Interdisciplinary Consensus Committee on DDH Evaluation (ICODE), Heraklion, Greece.
Department of Medical Imaging, University Hospital of Heraklion, Voutes, 71110, Crete, Greece.
Eur Radiol. 2022 Jan;32(1):542-550. doi: 10.1007/s00330-021-08070-x. Epub 2021 Jun 17.
To utilise machine learning, unsupervised clustering and multivariate modelling in order to predict severe early joint space narrowing (JSN) from anatomical hip parameters while identifying factors related to joint space width (JSW) in dysplastic and non-dysplastic hips.
A total of 507 hip CT examinations of patients 20-55 years old were retrospectively examined, and JSW, center-edge (CE) angle, alpha angle, anterior acetabular sector angle (AASA), and neck-shaft angle (NSA) were recorded. Dysplasia and severe JSN were defined with CE angle < 25 and JSW< 2 mm, respectively. A random forest classifier was developed to predict severe JSN based on anatomical and demographical data. Multivariate linear regression and two-step unsupervised clustering were performed to identify factors linked to JSW.
In dysplastic hips, lateral or anterior undercoverage alone was not correlated to JSN. AASA (p < 0.005) and CE angle (p < 0.032) were the only factors significantly correlated with JSN in dysplastic hips. In non-dysplastic hips, JSW was inversely correlated to CE angle, AASA, and age and positively correlated to NSA (p < 0.001). A random forest classifier predicted severe JSN (AUC 69.9%, 95%CI 47.9-91.8%). TwoStep cluster modelling identified two distinct patient clusters one with low and one with normal JSW and different anatomical characteristics.
Machine learning predicted severe JSN and identified population characteristics related to normal and abnormal joint space width. Dysplasia in one plane was found to be insufficient to cause JSN, highlighting the need for hip anatomy assessment on multiple planes.
• Neither anterior nor lateral acetabular dysplasia was sufficient to independently reduce joint space width in a multivariate linear regression model of dysplastic hips. • A random forest classifier was developed based on measurements and demographic parameters from 507 hip joints, achieving an area under the curve of 69.9% in the external validation set, in predicting severe joint space narrowing based on anatomical hip parameters and age. • Unsupervised TwoStep cluster analysis revealed two distinct population groups, one with low and one with normal joint space width, characterised by differences in hip morphology.
利用机器学习、无监督聚类和多变量建模来预测髋臼解剖参数中严重早期关节间隙狭窄(JSN),同时确定发育不良和非发育不良髋关节中与关节间隙宽度(JSW)相关的因素。
回顾性分析了 507 例 20-55 岁患者的髋关节 CT 检查,记录了 JSW、CE 角、α 角、前髋臼扇区角(AASA)和颈干角(NSA)。用 CE 角<25 和 JSW<2mm 分别定义发育不良和严重 JSN。基于解剖学和人口统计学数据,建立随机森林分类器预测严重 JSN。进行多元线性回归和两步无监督聚类,以确定与 JSW 相关的因素。
在发育不良的髋关节中,单纯的外侧或前侧覆盖不足与 JSN 无关。AASA(p<0.005)和 CE 角(p<0.032)是发育不良髋关节中与 JSN 唯一显著相关的因素。在非发育不良髋关节中,JSW 与 CE 角、AASA 和年龄呈负相关,与 NSA 呈正相关(p<0.001)。随机森林分类器预测严重 JSN(AUC 69.9%,95%CI 47.9-91.8%)。两步聚类模型确定了两个具有不同 JSW 和不同解剖学特征的患者亚群。
机器学习预测了严重的 JSN,并确定了与正常和异常关节间隙宽度相关的人群特征。在发育不良髋关节的多元线性回归模型中,一个平面的髋臼发育不良不足以独立导致 JSW 减小,这突出了需要对髋关节进行多平面解剖评估。
在前述发育不良髋关节的多元线性回归模型中,单纯的前侧或外侧髋臼发育不良不足以独立导致关节间隙宽度减小。
基于 507 个髋关节的测量值和人口统计学参数,建立了一个随机森林分类器,在外部验证集中的曲线下面积为 69.9%,可基于髋臼解剖参数和年龄预测严重的关节间隙狭窄。
无监督两步聚类分析揭示了两个具有不同 JSW 的明显人群亚群,其特征是髋关节形态存在差异。