Suppr超能文献

时程综合推进和制动冲量不依赖于步行速度。

Time-integrated propulsive and braking impulses do not depend on walking speed.

机构信息

University of Vermont, Department of Rehabilitation and Movement Science, USA.

University of Vermont, Department of Rehabilitation and Movement Science, USA.

出版信息

Gait Posture. 2021 Jul;88:258-263. doi: 10.1016/j.gaitpost.2021.06.012. Epub 2021 Jun 11.

Abstract

BACKGROUND

Enhancing propulsion during walking is often a focus in physical therapy for those with impaired gait. However, there is no consensus in the literature for assessing braking and propulsion. Both are typically measured from the anterior-posterior ground reaction force (AP-GRF). While normalization of AP-GRF force by bodyweight is commonly done in the analysis, different methods for AP-GRF time axis normalization are used.

RESEARCH QUESTION

Does walking speed affect propulsion and/or braking, and how do different methods for calculating propulsion and braking impact the conclusion, in both healthy adults and those with lower limb impairment?

METHODS

We investigated three different analysis methods for assessing propulsion. 1. BW-TimeIntegration: Bodyweight (BW) normalized time integration of AP-GRF (units of BWs). 2. BW-%StanceIntegration: BW normalized AP-GRF is resampled to percent stance phase prior to integration (units of BW%Stance). 3. BW-Peak: BW normalized peak force (units of BW). We applied these methods to two data sets. One data set included AP-GRFs from trials of slow, self-selected, and fast walking speeds for 203 healthy controls (HCs); a second data set included subjects with lower limb orthopedic injuries.

RESULTS

Using the BW-TimeIntegration method, we found no effect of walking speed on propulsion for HCs. Time integration over the longer stance phase of slower walking balanced the lower magnitude AP-GRFs of slower walking, resulting in a time-integrated impulse that was the same regardless of walking speed. In contrast, the other two methods that are not time integration methods found that propulsion increased with walking speed. Similarly, in the gait pathology data set, differences in results were found depending on the analysis method used.

SIGNIFICANCE

For many gait studies concerning propulsion and/or braking, the impulse measure used should be related to the body's change of momentum, necessitating an analysis method with a time integration of the AP-GRF.

摘要

背景

在针对步态受损患者的物理治疗中,增强步行时的推进力通常是重点。然而,在评估制动和推进力方面,文献中尚未达成共识。这两种力通常都是通过前-后向地面反力(AP-GRF)来测量。虽然在分析中通常通过体重对 AP-GRF 力进行归一化,但用于 AP-GRF 时间轴归一化的方法却不同。

研究问题

步行速度是否会影响推进力和/或制动力,以及在健康成年人和下肢受损患者中,不同的推进力和制动力计算方法会如何影响结论?

方法

我们研究了三种不同的分析方法来评估推进力。1. BW-TimeIntegration:AP-GRF 的体重归一化时间积分(单位为 BW)。2. BW-%StanceIntegration:AP-GRF 先重采样为占比支撑相,再进行体重归一化积分(单位为 BW%Stance)。3. BW-Peak:体重归一化的峰值力(单位为 BW)。我们将这些方法应用于两个数据集。一个数据集包含了 203 名健康对照者(HCs)进行慢、自选择和快步行走试验的 AP-GRF;另一个数据集包含了下肢矫形损伤的受试者。

结果

使用 BW-TimeIntegration 方法,我们发现 HC 组的步行速度对推进力没有影响。由于较慢步行的支撑相更长,时间积分平衡了较慢步行时较低的 AP-GRF 幅度,从而使步行速度无论快慢,时间积分的冲量都相同。相比之下,另外两种非时间积分方法发现推进力随步行速度增加而增加。同样,在步态病理数据集中,使用的分析方法不同,结果也有所不同。

意义

对于许多关于推进力和/或制动力的步态研究,所使用的冲量测量应该与身体的动量变化有关,这需要对 AP-GRF 进行时间积分的分析方法。

相似文献

1
Time-integrated propulsive and braking impulses do not depend on walking speed.
Gait Posture. 2021 Jul;88:258-263. doi: 10.1016/j.gaitpost.2021.06.012. Epub 2021 Jun 11.
3
Limb contribution to increased self-selected walking speeds during body weight support in individuals poststroke.
Gait Posture. 2015 Mar;41(3):857-9. doi: 10.1016/j.gaitpost.2015.02.004. Epub 2015 Feb 25.
4
Braking and propulsive impulses increase with speed during accelerated and decelerated walking.
Gait Posture. 2011 Apr;33(4):562-7. doi: 10.1016/j.gaitpost.2011.01.010. Epub 2011 Feb 26.
5
Propulsion and braking in the study of asymmetry in able-bodied men's gaits.
Percept Mot Skills. 2008 Dec;107(3):849-61. doi: 10.2466/pms.107.3.849-861.
6
Adaptive treadmill walking encourages persistent propulsion.
Gait Posture. 2022 Mar;93:246-251. doi: 10.1016/j.gaitpost.2022.02.017. Epub 2022 Feb 16.
7
Effects of walking speed on magnitude and symmetry of ground reaction forces in individuals with transfemoral prosthesis.
J Biomech. 2022 Jan;130:110845. doi: 10.1016/j.jbiomech.2021.110845. Epub 2021 Oct 28.
8
Can treadmill walking be used to assess propulsion generation?
J Biomech. 2008;41(8):1805-8. doi: 10.1016/j.jbiomech.2008.03.009. Epub 2008 Apr 23.
9
Altered post-stroke propulsion is related to paretic swing phase kinematics.
Clin Biomech (Bristol). 2020 Feb;72:24-30. doi: 10.1016/j.clinbiomech.2019.11.024. Epub 2019 Nov 29.

引用本文的文献

1
Gait kinetics before and after total hip arthroplasty in people with unilateral hip osteoarthritis.
PLoS One. 2025 Jun 26;20(6):e0326502. doi: 10.1371/journal.pone.0326502. eCollection 2025.
2
Gait speed-dependent modulation of paretic versus non-paretic propulsion in persons with chronic stroke.
J Neuroeng Rehabil. 2025 May 8;22(1):108. doi: 10.1186/s12984-025-01620-0.

本文引用的文献

1
These legs were made for propulsion: advancing the diagnosis and treatment of post-stroke propulsion deficits.
J Neuroeng Rehabil. 2020 Oct 21;17(1):139. doi: 10.1186/s12984-020-00747-6.
2
GaiTRec, a large-scale ground reaction force dataset of healthy and impaired gait.
Sci Data. 2020 May 12;7(1):143. doi: 10.1038/s41597-020-0481-z.
3
Paretic propulsion as a measure of walking performance and functional motor recovery post-stroke: A review.
Gait Posture. 2019 Feb;68:6-14. doi: 10.1016/j.gaitpost.2018.10.027. Epub 2018 Oct 25.
4
Mechanosensitive ion channels in articular nociceptors drive mechanical allodynia in osteoarthritis.
Osteoarthritis Cartilage. 2017 Dec;25(12):2091-2099. doi: 10.1016/j.joca.2017.08.012. Epub 2017 Sep 5.
5
Constraints on Stance-Phase Force Production during Overground Walking in Persons with Chronic Incomplete Spinal Cord Injury.
J Neurotrauma. 2018 Feb 1;35(3):467-477. doi: 10.1089/neu.2017.5146. Epub 2017 Oct 27.
6
Evaluation of measurements of propulsion used to reflect changes in walking speed in individuals poststroke.
J Biomech. 2016 Dec 8;49(16):4107-4112. doi: 10.1016/j.jbiomech.2016.10.003. Epub 2016 Oct 8.
7
The Age-Associated Reduction in Propulsive Power Generation in Walking.
Exerc Sport Sci Rev. 2016 Oct;44(4):129-36. doi: 10.1249/JES.0000000000000086.
8
Comprehensive non-dimensional normalization of gait data.
Gait Posture. 2016 Feb;44:68-73. doi: 10.1016/j.gaitpost.2015.11.013. Epub 2015 Dec 2.
9
Multi-segment foot kinematics and ground reaction forces during gait of individuals with plantar fasciitis.
J Biomech. 2014 Aug 22;47(11):2571-7. doi: 10.1016/j.jbiomech.2014.06.003. Epub 2014 Jun 11.
10
Real-time feedback enhances forward propulsion during walking in old adults.
Clin Biomech (Bristol). 2014 Jan;29(1):68-74. doi: 10.1016/j.clinbiomech.2013.10.018. Epub 2013 Oct 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验