Suppr超能文献

慢性血栓栓塞性肺动脉高压血管功能的多尺度模型。

A multiscale model of vascular function in chronic thromboembolic pulmonary hypertension.

机构信息

Department of Mathematics, North Carolina State University, Raleigh, North Carolina.

Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina.

出版信息

Am J Physiol Heart Circ Physiol. 2021 Aug 1;321(2):H318-H338. doi: 10.1152/ajpheart.00086.2021. Epub 2021 Jun 18.

Abstract

Chronic thromboembolic pulmonary hypertension (CTEPH) is caused by recurrent or unresolved pulmonary thromboemboli, leading to perfusion defects and increased arterial wave reflections. CTEPH treatment aims to reduce pulmonary arterial pressure and reestablish adequate lung perfusion, yet patients with distal lesions are inoperable by standard surgical intervention. Instead, these patients undergo balloon pulmonary angioplasty (BPA), a multisession, minimally invasive surgery that disrupts the thromboembolic material within the vessel lumen using a catheter balloon. However, there still lacks an integrative, holistic tool for identifying optimal target lesions for treatment. To address this insufficiency, we simulate CTEPH hemodynamics and BPA therapy using a multiscale fluid dynamics model. The large pulmonary arterial geometry is derived from a computed tomography (CT) image, whereas a fractal tree represents the small vessels. We model ring- and web-like lesions, common in CTEPH, and simulate normotensive conditions and four CTEPH disease scenarios; the latter includes both large artery lesions and vascular remodeling. BPA therapy is simulated by simultaneously reducing lesion severity in three locations. Our predictions mimic severe CTEPH, manifested by an increase in mean proximal pulmonary arterial pressure above 20 mmHg and prominent wave reflections. Both flow and pressure decrease in vessels distal to the lesions and increase in unobstructed vascular regions. We use the main pulmonary artery (MPA) pressure, a wave reflection index, and a measure of flow heterogeneity to select optimal target lesions for BPA. In summary, this study provides a multiscale, image-to-hemodynamics pipeline for BPA therapy planning for patients with inoperable CTEPH. This article presents novel computational framework for predicting pulmonary hemodynamics in chronic thromboembolic pulmonary hypertension. The mathematical model is used to identify the optimal target lesions for balloon pulmonary angioplasty, combining simulated pulmonary artery pressure, wave intensity analysis, and a new quantitative metric of flow heterogeneity.

摘要

慢性血栓栓塞性肺动脉高压(CTEPH)由复发性或未解决的肺血栓栓塞引起,导致灌注缺陷和动脉波反射增加。CTEPH 的治疗旨在降低肺动脉压并重新建立足够的肺灌注,但标准手术干预无法对有远端病变的患者进行手术。相反,这些患者接受球囊肺动脉成形术(BPA),这是一种多阶段、微创手术,通过导管球囊破坏血管腔内的血栓栓塞物质。然而,仍然缺乏一种综合的、整体的工具来识别最佳的治疗靶病变。为了解决这个不足,我们使用多尺度流体动力学模型模拟 CTEPH 血流动力学和 BPA 治疗。大的肺动脉几何形状是从 CT 图像中得出的,而分形树代表小血管。我们模拟了 CTEPH 中常见的环状和网眼状病变,并模拟了正常血压和四种 CTEPH 疾病情况;后者包括大动脉病变和血管重塑。通过同时在三个位置降低病变严重程度来模拟 BPA 治疗。我们的预测模拟了严重的 CTEPH,表现为近端肺动脉平均压力升高超过 20mmHg 和明显的波反射。病变远端的血流和压力降低,而未阻塞血管区域的血流增加。我们使用主肺动脉(MPA)压力、波反射指数和血流异质性的度量来选择 BPA 的最佳靶病变。总之,这项研究为无法手术的 CTEPH 患者提供了一种用于 BPA 治疗计划的多尺度、从图像到血流动力学的管道。本文提出了一种新的计算框架,用于预测慢性血栓栓塞性肺动脉高压的肺血流动力学。该数学模型用于识别球囊肺动脉成形术的最佳靶病变,结合模拟肺动脉压、波强分析和新的血流异质性定量指标。

相似文献

1
A multiscale model of vascular function in chronic thromboembolic pulmonary hypertension.
Am J Physiol Heart Circ Physiol. 2021 Aug 1;321(2):H318-H338. doi: 10.1152/ajpheart.00086.2021. Epub 2021 Jun 18.
2
[Consensus on the procedure of balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension].
Zhonghua Jie He He Hu Xi Za Zhi. 2024 May 12;47(5):404-418. doi: 10.3760/cma.j.cn112147-20231231-00403.
4
Medical Therapy Versus Balloon Angioplasty for CTEPH: A Systematic Review and Meta-Analysis.
Heart Lung Circ. 2018 Jan;27(1):89-98. doi: 10.1016/j.hlc.2017.01.016. Epub 2017 Mar 1.
7
Effects of balloon pulmonary angioplasty for chronic thromboembolic pulmonary hypertension on remodeling in right-sided heart.
Int J Cardiovasc Imaging. 2020 Jun;36(6):1053-1060. doi: 10.1007/s10554-020-01798-5. Epub 2020 Feb 21.
8
Recent progress in the diagnosis and management of chronic thromboembolic pulmonary hypertension.
Respir Investig. 2013 Sep;51(3):134-46. doi: 10.1016/j.resinv.2013.02.005. Epub 2013 Apr 30.

引用本文的文献

2
Dissecting contributions of pulmonary arterial remodeling to right ventricular afterload in pulmonary hypertension.
Bioeng Transl Med. 2025 Jun 26;10(4):e70035. doi: 10.1002/btm2.70035. eCollection 2025 Jul.
3
Parameter selection and optimization of a computational network model of blood flow in single-ventricle patients.
J R Soc Interface. 2025 Feb;22(223):20240663. doi: 10.1098/rsif.2024.0663. Epub 2025 Feb 27.
5
Efficient uncertainty quantification in a spatially multiscale model of pulmonary arterial and venous hemodynamics.
Biomech Model Mechanobiol. 2024 Dec;23(6):1909-1931. doi: 10.1007/s10237-024-01875-x. Epub 2024 Jul 29.
6
A perfectly imperfect engine: Utilizing the digital twin paradigm in pulmonary hypertension.
Pulm Circ. 2024 Jun 25;14(2):e12392. doi: 10.1002/pul2.12392. eCollection 2024 Apr.
7
Estimating pulmonary arterial remodeling via an animal-specific computational model of pulmonary artery stenosis.
Biomech Model Mechanobiol. 2024 Oct;23(5):1469-1490. doi: 10.1007/s10237-024-01850-6. Epub 2024 Jun 25.
9
Turbulent blood dynamics in the left heart in the presence of mitral regurgitation: a computational study based on multi-series cine-MRI.
Biomech Model Mechanobiol. 2023 Dec;22(6):1829-1846. doi: 10.1007/s10237-023-01735-0. Epub 2023 Jul 3.
10
Pulmonary artery blood flow dynamics in chronic thromboembolic pulmonary hypertension.
Sci Rep. 2023 Apr 20;13(1):6490. doi: 10.1038/s41598-023-33727-6.

本文引用的文献

1
Non-invasive procedural planning using computed tomography-derived fractional flow reserve.
Catheter Cardiovasc Interv. 2021 Mar;97(4):614-622. doi: 10.1002/ccd.29210. Epub 2020 Aug 26.
2
Structural and hemodynamic properties of murine pulmonary arterial networks under hypoxia-induced pulmonary hypertension.
Proc Inst Mech Eng H. 2020 Nov;234(11):1312-1329. doi: 10.1177/0954411920944110. Epub 2020 Jul 28.
3
Microvascular Disease in Chronic Thromboembolic Pulmonary Hypertension: Hemodynamic Phenotyping and Histomorphometric Assessment.
Circulation. 2020 Feb 4;141(5):376-386. doi: 10.1161/CIRCULATIONAHA.119.041515. Epub 2020 Jan 3.
4
Influence of image segmentation on one-dimensional fluid dynamics predictions in the mouse pulmonary arteries.
J R Soc Interface. 2019 Oct 31;16(159):20190284. doi: 10.1098/rsif.2019.0284. Epub 2019 Oct 2.
5
6
Meta-analysis of use of balloon pulmonary angioplasty in patients with inoperable chronic thromboembolic pulmonary hypertension.
Int J Cardiol. 2019 Sep 15;291:134-139. doi: 10.1016/j.ijcard.2019.02.051. Epub 2019 Feb 23.
7
Proximal pressure reducing effect of wave reflection in the pulmonary circulation disappear in obstructive disease: insight from a rabbit model.
Am J Physiol Heart Circ Physiol. 2019 May 1;316(5):H992-H1004. doi: 10.1152/ajpheart.00635.2018. Epub 2019 Feb 15.
8
Evolution of hemodynamic forces in the pulmonary tree with progressively worsening pulmonary arterial hypertension in pediatric patients.
Biomech Model Mechanobiol. 2019 Jun;18(3):779-796. doi: 10.1007/s10237-018-01114-0. Epub 2019 Jan 12.
9
Haemodynamic definitions and updated clinical classification of pulmonary hypertension.
Eur Respir J. 2019 Jan 24;53(1). doi: 10.1183/13993003.01913-2018. Print 2019 Jan.
10
Comparison of 1D and 3D Models for the Estimation of Fractional Flow Reserve.
Sci Rep. 2018 Nov 22;8(1):17275. doi: 10.1038/s41598-018-35344-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验