Suppr超能文献

基于自适应多模型空间特征融合的图像分解与融合在乳腺超声肿瘤图像分类中的应用。

Breast ultrasound tumor image classification using image decomposition and fusion based on adaptive multi-model spatial feature fusion.

机构信息

Department of Electronic Engineering, Shantou University, Shantou, Guangdong, China.

Department of Electronic Engineering, Shantou University, Shantou, Guangdong, China.

出版信息

Comput Methods Programs Biomed. 2021 Sep;208:106221. doi: 10.1016/j.cmpb.2021.106221. Epub 2021 Jun 3.

Abstract

BACKGROUND AND OBJECTIVE

Breast cancer is a fatal threat to the health of women. Ultrasonography is a common method for the detection of breast cancer. Computer-aided diagnosis of breast ultrasound images can help doctors in diagnosing benign and malignant lesions. In this paper, by combining image decomposition and fusion techniques with adaptive spatial feature fusion technology, a reliable classification method for breast ultrasound images of tumors is proposed.

METHODS

First, fuzzy enhancement and bilateral filtering algorithms are used to process the original breast ultrasound image. Then, various decomposition images representing the clinical characteristics of breast tumors are obtained using the original and mask images. By considering the diversity of the benign and malignant characteristic information represented by each decomposition image, the decomposition images are fused through the RGB channel, and three types of fusion images are generated. Then, from a series of candidate deep learning models, transfer learning is used to select the best model as the base model to extract deep learning features. Finally, while training the classification network, adaptive spatial feature fusion technology is used to train the weight network to complete deep learning feature fusion and classification.

RESULTS

In this study, 1328 breast ultrasound images were collected for training and testing. The experimental results show that the values of accuracy, precision, specificity, sensitivity/recall, F1 score, and area under the curve of the proposed method were 0.9548, 0.9811, 0.9833, 0.9392, 0.9571, and 0.9883, respectively.

CONCLUSION

Our research can automate breast cancer detection and has strong clinical utility. When compared to previous methods, our proposed method is expected to be more effective while assisting doctors in diagnosing breast ultrasound images.

摘要

背景与目的

乳腺癌是危害女性健康的致命威胁。超声检查是乳腺癌检测的常用方法。计算机辅助诊断乳腺超声图像可以帮助医生诊断良性和恶性病变。在本文中,我们提出了一种结合图像分解和融合技术与自适应空间特征融合技术的可靠的乳腺肿瘤超声图像分类方法。

方法

首先,使用模糊增强和双边滤波算法处理原始乳腺超声图像。然后,使用原始图像和掩模图像获得代表乳腺肿瘤临床特征的各种分解图像。考虑到各分解图像所代表的良性和恶性特征信息的多样性,通过 RGB 通道对分解图像进行融合,生成三种融合图像。然后,从一系列候选深度学习模型中,通过迁移学习选择最佳模型作为基础模型来提取深度学习特征。最后,在训练分类网络的同时,使用自适应空间特征融合技术训练权重网络,完成深度学习特征融合和分类。

结果

本研究共采集了 1328 例乳腺超声图像用于训练和测试。实验结果表明,该方法的准确率、精度、特异性、敏感度/召回率、F1 得分和曲线下面积分别为 0.9548、0.9811、0.9833、0.9392、0.9571 和 0.9883。

结论

我们的研究可以实现乳腺癌的自动检测,具有很强的临床实用性。与以往的方法相比,我们提出的方法有望在辅助医生诊断乳腺超声图像时更加有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验