Department of Epidemiology & Biostatistics, IQ - Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
Eur J Hum Genet. 2021 Dec;29(12):1762-1773. doi: 10.1038/s41431-021-00911-z. Epub 2021 Jun 18.
Pleiotropy (i.e., genes with effects on multiple traits) leads to genetic correlations between traits and contributes to the development of many syndromes. Identifying variants with pleiotropic effects on multiple health-related traits can improve the biological understanding of gene action and disease etiology, and can help to advance disease-risk prediction. Sequential testing is a powerful approach for mapping genes with pleiotropic effects. However, the existing methods and the available software do not scale to analyses involving millions of SNPs and large datasets. This has limited the adoption of sequential testing for pleiotropy mapping at large scale. In this study, we present a sequential test and software that can be used to test pleiotropy in large systems of traits with biobank-sized data. Using simulations, we show that the methods implemented in the software are powerful and have adequate type-I error rate control. To demonstrate the use of the methods and software, we present a whole-genome scan in search of loci with pleiotropic effects on seven traits related to metabolic syndrome (MetS) using UK-Biobank data (n~300 K distantly related white European participants). We found abundant pleiotropy and report 170, 44, and 18 genomic regions harboring SNPs with pleiotropic effects in at least two, three, and four of the seven traits, respectively. We validate our results using previous studies documented in the GWAS-catalog and using data from GTEx. Our results confirm previously reported loci and lead to several novel discoveries that link MetS-related traits through plausible biological pathways.
多效性(即对多种性状有影响的基因)导致性状之间存在遗传相关性,并导致许多综合征的发生。识别对多种健康相关性状具有多效性影响的变体可以改善对基因作用和疾病病因的生物学理解,并有助于推进疾病风险预测。顺序测试是一种用于绘制具有多效性影响的基因的强大方法。然而,现有的方法和可用的软件无法扩展到涉及数百万个 SNP 和大型数据集的分析。这限制了顺序测试在大规模多效性映射中的应用。在这项研究中,我们提出了一种顺序测试和软件,可以用于在具有生物库大小数据的大型性状系统中测试多效性。通过模拟,我们表明软件中实现的方法功能强大,具有适当的Ⅰ型错误率控制。为了演示方法和软件的使用,我们使用 UK-Biobank 数据(n~300K 个远缘白种欧洲参与者)进行全基因组扫描,寻找与代谢综合征 (MetS) 相关的七个性状具有多效性效应的基因座。我们发现了大量的多效性,并报告了 170、44 和 18 个基因组区域,分别含有至少两个、三个和四个七个性状中具有多效性效应的 SNP。我们使用 GWAS-catalog 中记录的先前研究和 GTEx 中的数据来验证我们的结果。我们的结果证实了先前报道的基因座,并导致了一些新的发现,通过合理的生物学途径将 MetS 相关性状联系起来。