Suppr超能文献

系统药理学基因组学鉴定出治疗髓母细胞瘤的新靶点和临床可操作的治疗方法。

Systems pharmacogenomics identifies novel targets and clinically actionable therapeutics for medulloblastoma.

机构信息

The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia.

Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.

出版信息

Genome Med. 2021 Jun 21;13(1):103. doi: 10.1186/s13073-021-00920-z.

Abstract

BACKGROUND

Medulloblastoma (MB) is the most common malignant paediatric brain tumour and a leading cause of cancer-related mortality and morbidity. Existing treatment protocols are aggressive in nature resulting in significant neurological, intellectual and physical disabilities for the children undergoing treatment. Thus, there is an urgent need for improved, targeted therapies that minimize these harmful side effects.

METHODS

We identified candidate drugs for MB using a network-based systems-pharmacogenomics approach: based on results from a functional genomics screen, we identified a network of interactions implicated in human MB growth regulation. We then integrated drugs and their known mechanisms of action, along with gene expression data from a large collection of medulloblastoma patients to identify drugs with potential to treat MB.

RESULTS

Our analyses identified drugs targeting CDK4, CDK6 and AURKA as strong candidates for MB; all of these genes are well validated as drug targets in other tumour types. We also identified non-WNT MB as a novel indication for drugs targeting TUBB, CAD, SNRPA, SLC1A5, PTPRS, P4HB and CHEK2. Based upon these analyses, we subsequently demonstrated that one of these drugs, the new microtubule stabilizing agent, ixabepilone, blocked tumour growth in vivo in mice bearing patient-derived xenograft tumours of the Sonic Hedgehog and Group 3 subtype, providing the first demonstration of its efficacy in MB.

CONCLUSIONS

Our findings confirm that this data-driven systems pharmacogenomics strategy is a powerful approach for the discovery and validation of novel therapeutic candidates relevant to MB treatment, and along with data validating ixabepilone in PDX models of the two most aggressive subtypes of medulloblastoma, we present the network analysis framework as a resource for the field.

摘要

背景

髓母细胞瘤(MB)是最常见的小儿恶性脑肿瘤,也是癌症相关死亡和发病的主要原因。现有的治疗方案具有侵袭性,导致接受治疗的儿童出现严重的神经、智力和身体残疾。因此,迫切需要改进、靶向治疗,以最大限度地减少这些有害的副作用。

方法

我们使用基于网络的系统药物基因组学方法来鉴定 MB 的候选药物:基于功能基因组筛选的结果,我们鉴定了一个涉及人类 MB 生长调节的相互作用网络。然后,我们整合了药物及其已知的作用机制,以及来自大量髓母细胞瘤患者的基因表达数据,以确定有潜力治疗 MB 的药物。

结果

我们的分析确定了靶向 CDK4、CDK6 和 AURKA 的药物作为 MB 的强候选药物;所有这些基因在其他肿瘤类型中都是经过充分验证的药物靶点。我们还发现非 WNT MB 是针对靶向 TUBB、CAD、SNRPA、SLC1A5、PTPRS、P4HB 和 CHEK2 的药物的新适应症。基于这些分析,我们随后证明了这些药物中的一种,新型微管稳定剂 ixabepilone,在携带 Sonic Hedgehog 和 Group 3 亚型患者来源异种移植肿瘤的小鼠体内阻断肿瘤生长,首次证明了其在 MB 中的疗效。

结论

我们的发现证实了这种数据驱动的系统药物基因组学策略是发现和验证与 MB 治疗相关的新型治疗候选物的有力方法,并且随着数据验证 ixabepilone 在两种最具侵袭性的髓母细胞瘤 PDX 模型中的疗效,我们提出了网络分析框架作为该领域的资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ff8/8215804/89a933a0230b/13073_2021_920_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验