Cardiovascular Research Institute.
Feil Family Brain and Mind Research Institute, and.
JCI Insight. 2021 Aug 9;6(15):e150698. doi: 10.1172/jci.insight.150698.
SCN2A, encoding the neuronal voltage-gated Na+ channel NaV1.2, is one of the most commonly affected loci linked to autism spectrum disorders (ASDs). Most ASD-associated mutations in SCN2A are loss-of-function mutations, but studies examining how such mutations affect neuronal function and whether Scn2a mutant mice display ASD endophenotypes have been inconsistent. We generated a protein truncation variant Scn2a mouse model (Scn2aΔ1898/+) by CRISPR that eliminates the NaV1.2 channel's distal intracellular C-terminal domain, and we analyzed the molecular and cellular consequences of this variant in a heterologous expression system, in neuronal culture, in brain slices, and in vivo. We also analyzed multiple behaviors in WT and Scn2aΔ1898/+ mice and correlated behaviors with clinical data obtained in human subjects with SCN2A variants. Expression of the NaV1.2 mutant in a heterologous expression system revealed decreased NaV1.2 channel function, and cultured pyramidal neurons isolated from Scn2aΔ1898/+ forebrain showed correspondingly reduced voltage-gated Na+ channel currents without compensation from other CNS voltage-gated Na+ channels. Na+ currents in inhibitory neurons were unaffected. Consistent with loss of voltage-gated Na+ channel currents, Scn2aΔ1898/+ pyramidal neurons displayed reduced excitability in forebrain neuronal culture and reduced excitatory synaptic input onto the pyramidal neurons in brain slices. Scn2aΔ1898/+ mice displayed several behavioral abnormalities, including abnormal social interactions that reflect behavior observed in humans with ASD and with harboring loss-of-function SCN2A variants. This model and its cellular electrophysiological characterizations provide a framework for tracing how a SCN2A loss-of-function variant leads to cellular defects that result in ASD-associated behaviors.
SCN2A 编码神经元电压门控 Na+ 通道 NaV1.2,是与自闭症谱系障碍 (ASD) 相关的最常见的遗传变异之一。SCN2A 中的大多数 ASD 相关突变是功能丧失性突变,但研究这些突变如何影响神经元功能以及 Scn2a 突变小鼠是否表现出 ASD 表型的研究结果并不一致。我们通过 CRISPR 生成了一种蛋白截断变异体 Scn2a 小鼠模型 (Scn2aΔ1898/+),该模型消除了 NaV1.2 通道的远端细胞内 C 端结构域,并在异源表达系统、神经元培养、脑片和体内分析了该变体的分子和细胞后果。我们还分析了 WT 和 Scn2aΔ1898/+ 小鼠的多种行为,并将行为与从携带 SCN2A 变异体的人类受试者中获得的临床数据进行了相关性分析。NaV1.2 突变体在异源表达系统中的表达显示 NaV1.2 通道功能降低,并且从 Scn2aΔ1898/+ 前脑分离的培养锥体神经元显示相应的电压门控 Na+ 通道电流减少,而其他中枢神经系统电压门控 Na+ 通道没有代偿。抑制性神经元的 Na+ 电流不受影响。与电压门控 Na+ 通道电流的丧失一致,Scn2aΔ1898/+ 锥体神经元在前脑神经元培养中表现出兴奋性降低,并且在脑片中兴奋性突触传入到锥体神经元的兴奋性降低。Scn2aΔ1898/+ 小鼠表现出多种行为异常,包括异常的社交互动,这反映了 ASD 患者和携带功能丧失性 SCN2A 变异体的患者的行为。该模型及其细胞电生理特征为研究 SCN2A 功能丧失性变异如何导致导致 ASD 相关行为的细胞缺陷提供了一个框架。