Suppr超能文献

基于去卷积的并行水平集正则化的 PET 图像部分容积校正。

Deconvolution-based partial volume correction of PET images with parallel level set regularization.

机构信息

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States of America.

Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States of America.

出版信息

Phys Med Biol. 2021 Jul 9;66(14). doi: 10.1088/1361-6560/ac0d8f.

Abstract

The partial volume effect (PVE), caused by the limited spatial resolution of positron emission tomography (PET), degrades images both qualitatively and quantitatively. Anatomical information provided by magnetic resonance (MR) images has the potential to play an important role in partial volume correction (PVC) methods. Post-reconstruction MR-guided PVC methods typically use segmented MR tissue maps, and further, assume that PET activity distribution is uniform in each region, imposing considerable constraints through anatomical guidance. In this work, we present a post-reconstruction PVC method based on deconvolution with parallel level set (PLS) regularization. We frame the problem as an iterative deconvolution task with PLS regularization that incorporates anatomical information without requiring MR segmentation or assuming uniformity of PET distributions within regions. An efficient algorithm for non-smooth optimization of the objective function (invoking split Bregman framework) is developed so that the proposed method can be feasibly applied to 3D images and produces sharper images compared to PLS method with smooth optimization. The proposed method was evaluated together with several other PVC methods using both realistic simulation experiments based on the BrainWeb phantom as well ashuman data. Our proposed method showed enhanced quantitative performance when realistic MR guidance was provided. Further, the proposed method is able to reduce image noise while preserving structure details onhuman data, and shows the potential to better differentiate amyloid positive and amyloid negative scans. Overall, our results demonstrate promise to provide superior performance in clinical imaging scenarios.

摘要

部分容积效应(PVE)是由正电子发射断层扫描(PET)的空间分辨率有限引起的,会导致图像质量和数量下降。磁共振(MR)图像提供的解剖学信息有可能在部分容积校正(PVC)方法中发挥重要作用。基于重建后的 MR 引导的 PVC 方法通常使用分段的 MR 组织图,并进一步假设 PET 活性分布在每个区域内是均匀的,通过解剖学引导施加了相当大的约束。在这项工作中,我们提出了一种基于反卷积与并行水平集(PLS)正则化的基于重建后的 PVC 方法。我们将问题表述为一个迭代反卷积任务,其中 PLS 正则化包含解剖学信息,而无需进行 MR 分割或假设区域内的 PET 分布均匀。开发了一种用于非光滑优化目标函数的有效算法(调用分裂 Bregman 框架),以便提出的方法可以灵活地应用于 3D 图像,并产生比具有光滑优化的 PLS 方法更清晰的图像。我们使用基于 BrainWeb 体模的真实模拟实验以及人体数据,将提出的方法与其他几种 PVC 方法一起进行了评估。当提供真实的 MR 引导时,我们提出的方法显示出增强的定量性能。此外,该方法能够在人体数据上降低图像噪声,同时保留结构细节,并显示出更好地区分淀粉样蛋白阳性和淀粉样蛋白阴性扫描的潜力。总的来说,我们的结果表明,在临床成像场景中提供更好性能的潜力。

相似文献

2
Voxel-based partial volume correction of PET images via subtle MRI guided non-local means regularization.
Phys Med. 2021 Sep;89:129-139. doi: 10.1016/j.ejmp.2021.07.028. Epub 2021 Aug 5.
3
Two novel PET image restoration methods guided by PET-MR kernels: Application to brain imaging.
Med Phys. 2019 May;46(5):2085-2102. doi: 10.1002/mp.13418. Epub 2019 Mar 12.
5
Deconvolution-based partial volume correction in Raclopride-PET and Monte Carlo comparison to MR-based method.
Neuroimage. 2008 Feb 15;39(4):1570-84. doi: 10.1016/j.neuroimage.2007.10.038. Epub 2007 Nov 7.
6
The importance of appropriate partial volume correction for PET quantification in Alzheimer's disease.
Eur J Nucl Med Mol Imaging. 2011 Jun;38(6):1104-19. doi: 10.1007/s00259-011-1745-9. Epub 2011 Feb 19.
7
Comparative assessment of statistical brain MR image segmentation algorithms and their impact on partial volume correction in PET.
Neuroimage. 2006 Oct 1;32(4):1591-607. doi: 10.1016/j.neuroimage.2006.05.031. Epub 2006 Jul 7.
8
A cycle-consistent adversarial network for brain PET partial volume correction without prior anatomical information.
Eur J Nucl Med Mol Imaging. 2023 Jun;50(7):1881-1896. doi: 10.1007/s00259-023-06152-0. Epub 2023 Feb 20.
9
Synergistic PET and SENSE MR Image Reconstruction Using Joint Sparsity Regularization.
IEEE Trans Med Imaging. 2018 Jan;37(1):20-34. doi: 10.1109/TMI.2017.2691044. Epub 2017 Apr 18.
10
MR-guided joint reconstruction of activity and attenuation in brain PET-MR.
Neuroimage. 2017 Nov 15;162:276-288. doi: 10.1016/j.neuroimage.2017.09.006. Epub 2017 Sep 14.

引用本文的文献

1
On the partial volume effect in magnetic particle imaging.
Phys Med Biol. 2025 Feb 4;70(4). doi: 10.1088/1361-6560/ada417.
2
Partial volume correction for Lu-177-PSMA SPECT.
EJNMMI Phys. 2024 Nov 12;11(1):93. doi: 10.1186/s40658-024-00697-1.

本文引用的文献

1
Faster PET reconstruction with non-smooth priors by randomization and preconditioning.
Phys Med Biol. 2019 Nov 21;64(22):225019. doi: 10.1088/1361-6560/ab3d07.
4
Partial volume correction of brain PET studies using iterative deconvolution in combination with HYPR denoising.
EJNMMI Res. 2017 Dec;7(1):36. doi: 10.1186/s13550-017-0284-1. Epub 2017 Apr 21.
5
Neurologic Applications of PET/MR Imaging.
Magn Reson Imaging Clin N Am. 2017 May;25(2):297-313. doi: 10.1016/j.mric.2016.12.003. Epub 2017 Jan 26.
6
Generalized PSF modeling for optimized quantitation in PET imaging.
Phys Med Biol. 2017 Jun 21;62(12):5149-5179. doi: 10.1088/1361-6560/aa6911. Epub 2017 Mar 24.
7
PETPVC: a toolbox for performing partial volume correction techniques in positron emission tomography.
Phys Med Biol. 2016 Nov 21;61(22):7975-7993. doi: 10.1088/0031-9155/61/22/7975. Epub 2016 Oct 25.
8
Partial Volume Correction Strategies in PET.
PET Clin. 2007 Apr;2(2):235-49. doi: 10.1016/j.cpet.2007.10.005. Epub 2008 Feb 15.
9
PET Reconstruction With an Anatomical MRI Prior Using Parallel Level Sets.
IEEE Trans Med Imaging. 2016 Sep;35(9):2189-2199. doi: 10.1109/TMI.2016.2549601. Epub 2016 Apr 14.
10
MUSE: MUlti-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters, and locally optimal atlas selection.
Neuroimage. 2016 Feb 15;127:186-195. doi: 10.1016/j.neuroimage.2015.11.073. Epub 2015 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验