Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States of America.
Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States of America.
Phys Med Biol. 2021 Jul 9;66(14). doi: 10.1088/1361-6560/ac0d8f.
The partial volume effect (PVE), caused by the limited spatial resolution of positron emission tomography (PET), degrades images both qualitatively and quantitatively. Anatomical information provided by magnetic resonance (MR) images has the potential to play an important role in partial volume correction (PVC) methods. Post-reconstruction MR-guided PVC methods typically use segmented MR tissue maps, and further, assume that PET activity distribution is uniform in each region, imposing considerable constraints through anatomical guidance. In this work, we present a post-reconstruction PVC method based on deconvolution with parallel level set (PLS) regularization. We frame the problem as an iterative deconvolution task with PLS regularization that incorporates anatomical information without requiring MR segmentation or assuming uniformity of PET distributions within regions. An efficient algorithm for non-smooth optimization of the objective function (invoking split Bregman framework) is developed so that the proposed method can be feasibly applied to 3D images and produces sharper images compared to PLS method with smooth optimization. The proposed method was evaluated together with several other PVC methods using both realistic simulation experiments based on the BrainWeb phantom as well ashuman data. Our proposed method showed enhanced quantitative performance when realistic MR guidance was provided. Further, the proposed method is able to reduce image noise while preserving structure details onhuman data, and shows the potential to better differentiate amyloid positive and amyloid negative scans. Overall, our results demonstrate promise to provide superior performance in clinical imaging scenarios.
部分容积效应(PVE)是由正电子发射断层扫描(PET)的空间分辨率有限引起的,会导致图像质量和数量下降。磁共振(MR)图像提供的解剖学信息有可能在部分容积校正(PVC)方法中发挥重要作用。基于重建后的 MR 引导的 PVC 方法通常使用分段的 MR 组织图,并进一步假设 PET 活性分布在每个区域内是均匀的,通过解剖学引导施加了相当大的约束。在这项工作中,我们提出了一种基于反卷积与并行水平集(PLS)正则化的基于重建后的 PVC 方法。我们将问题表述为一个迭代反卷积任务,其中 PLS 正则化包含解剖学信息,而无需进行 MR 分割或假设区域内的 PET 分布均匀。开发了一种用于非光滑优化目标函数的有效算法(调用分裂 Bregman 框架),以便提出的方法可以灵活地应用于 3D 图像,并产生比具有光滑优化的 PLS 方法更清晰的图像。我们使用基于 BrainWeb 体模的真实模拟实验以及人体数据,将提出的方法与其他几种 PVC 方法一起进行了评估。当提供真实的 MR 引导时,我们提出的方法显示出增强的定量性能。此外,该方法能够在人体数据上降低图像噪声,同时保留结构细节,并显示出更好地区分淀粉样蛋白阳性和淀粉样蛋白阴性扫描的潜力。总的来说,我们的结果表明,在临床成像场景中提供更好性能的潜力。