Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
Environ Microbiol. 2021 Aug;23(8):4547-4560. doi: 10.1111/1462-2920.15648. Epub 2021 Jun 24.
Overcoming lignocellulosic biomass recalcitrance, especially the cleavage of cross-linkages in lignin-carbohydrate complexes (LCCs) and lignin, is essential for both the carbon cycle and industrial biorefinery. Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that play a key role in fungal polysaccharide oxidative degradation. Nevertheless, comprehensive analysis showed that LPMOs from a white-rot fungus, Pleurotus ostreatus, correlated well with the Fenton reaction and were involved in the degradation of recalcitrant nonpolysaccharide fractions in this research. Thus, LPMOs participated in the extracellular Fenton reaction by enhancing iron reduction in quinone redox cycling. A Fenton reaction system consisting of LPMOs, hydroquinone, and ferric iron can efficiently produce hydroxy radicals and then cleave LCCs or lignin linkages. This finding indicates that LPMOs are underestimated auxiliary enzymes in eliminating biomass recalcitrance.
克服木质纤维素生物质的顽固性,特别是木质素-碳水化合物复合物(LCC)和木质素中交联键的断裂,对于碳循环和工业生物炼制都至关重要。溶细胞单加氧酶(LPMOs)是含有铜的酶,在真菌多糖的氧化降解中发挥着关键作用。然而,全面的分析表明,来自白腐真菌糙皮侧耳的 LPMOs 与芬顿反应密切相关,并参与了本研究中难处理的非多糖部分的降解。因此,LPMOs 通过增强醌氧化还原循环中的铁还原参与细胞外芬顿反应。由 LPMOs、对苯二酚和三价铁组成的芬顿反应体系可以有效地产生羟基自由基,然后裂解 LCC 或木质素键。这一发现表明,LPMOs 是消除生物质顽固性被低估的辅助酶。