Suppr超能文献

溶细胞多糖单加氧酶在真菌降解木质纤维素过程中促进木质素和木质素-碳水化合物复合物的氧化裂解。

Lytic polysaccharide monooxygenases promote oxidative cleavage of lignin and lignin-carbohydrate complexes during fungal degradation of lignocellulose.

机构信息

Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.

出版信息

Environ Microbiol. 2021 Aug;23(8):4547-4560. doi: 10.1111/1462-2920.15648. Epub 2021 Jun 24.

Abstract

Overcoming lignocellulosic biomass recalcitrance, especially the cleavage of cross-linkages in lignin-carbohydrate complexes (LCCs) and lignin, is essential for both the carbon cycle and industrial biorefinery. Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that play a key role in fungal polysaccharide oxidative degradation. Nevertheless, comprehensive analysis showed that LPMOs from a white-rot fungus, Pleurotus ostreatus, correlated well with the Fenton reaction and were involved in the degradation of recalcitrant nonpolysaccharide fractions in this research. Thus, LPMOs participated in the extracellular Fenton reaction by enhancing iron reduction in quinone redox cycling. A Fenton reaction system consisting of LPMOs, hydroquinone, and ferric iron can efficiently produce hydroxy radicals and then cleave LCCs or lignin linkages. This finding indicates that LPMOs are underestimated auxiliary enzymes in eliminating biomass recalcitrance.

摘要

克服木质纤维素生物质的顽固性,特别是木质素-碳水化合物复合物(LCC)和木质素中交联键的断裂,对于碳循环和工业生物炼制都至关重要。溶细胞单加氧酶(LPMOs)是含有铜的酶,在真菌多糖的氧化降解中发挥着关键作用。然而,全面的分析表明,来自白腐真菌糙皮侧耳的 LPMOs 与芬顿反应密切相关,并参与了本研究中难处理的非多糖部分的降解。因此,LPMOs 通过增强醌氧化还原循环中的铁还原参与细胞外芬顿反应。由 LPMOs、对苯二酚和三价铁组成的芬顿反应体系可以有效地产生羟基自由基,然后裂解 LCC 或木质素键。这一发现表明,LPMOs 是消除生物质顽固性被低估的辅助酶。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验