Li Fu, Zhang Mengjie, Chen Wenyan, Cai Xin, Rao Huashang, Chang Jian, Fang Yueping, Zhong Xinhua, Yang Yu, Yang Zhuohong, Yu Xiaoyuan
Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong 510642, China.
Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China.
ACS Appl Mater Interfaces. 2021 Jul 7;13(26):30746-30755. doi: 10.1021/acsami.1c08113. Epub 2021 Jun 25.
Lithium-sulfur batteries (LSBs) have been considered as potential next-generation energy storage systems due to their high specific energy of 2600 Wh kg and 2800 Wh L. Nevertheless, the practical application of LSBs still faces several hazards, including the shuttle effect of soluble lithium polysulfides, low electrical conductivities of solid sulfur and lithium sulfides, and large volume expansion during charge/discharge cycles. To address this critical challenge, we innovatively proposed facile synthesis of nanostructured VN quantum dots (VNQD)/holey graphene matrix for stabilizing the sulfur cathode by simultaneously promoting the trapping, anchoring, and catalyzing efficiencies of both LiPSs and LiS. Benefiting from abundant edge catalytic sites of VNQD, in-plane nanopores of graphene, and high electrical conductivity, the sulfur host not only provides high adsorption capability toward soluble polysulfides, strong binding ability for anchoring solid LiS, and their rapid conversion kinetics but also contributes abundant sulfur storage sites and efficient transport pathways for lithium ions (Li) and electrons. Consequently, the sulfur cathode exhibits high initial capacities of 1320 mAh g, high rate capability (850 mAh g @ 4 mA cm), and high capacity retention of 99.95% per cycle after 500 cycles, providing a feasible solution for the practical utilization of shuttle-free Li-S batteries.
锂硫电池(LSBs)因其2600 Wh/kg和2800 Wh/L的高比能量而被视为潜在的下一代储能系统。然而,锂硫电池的实际应用仍面临一些问题,包括可溶性多硫化锂的穿梭效应、固态硫和硫化锂的低电导率以及充放电循环过程中的大量体积膨胀。为应对这一关键挑战,我们创新性地提出了一种简便的方法来合成纳米结构的氮化钒量子点(VNQD)/多孔石墨烯基体,通过同时提高多硫化锂(LiPSs)和硫化锂(LiS)的捕获、锚定和催化效率来稳定硫正极。得益于氮化钒量子点丰富的边缘催化位点、石墨烯的面内纳米孔以及高电导率,硫主体不仅对可溶性多硫化物具有高吸附能力、对固态硫化锂具有强结合能力以及快速的转化动力学,而且还提供了丰富的硫存储位点以及锂离子(Li)和电子的高效传输途径。因此,硫正极展现出1320 mAh/g的高初始容量、高倍率性能(4 mA/cm²下为850 mAh/g)以及500次循环后每循环99.95%的高容量保持率,为无穿梭效应的锂硫电池的实际应用提供了一种可行的解决方案。