Institute for Genetics, University of Cologne, Cologne, Germany.
Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
Nat Commun. 2021 Jun 25;12(1):3965. doi: 10.1038/s41467-021-24046-3.
Eukaryotic gene expression is constantly controlled by the translation-coupled nonsense-mediated mRNA decay (NMD) pathway. Aberrant translation termination leads to NMD activation, resulting in phosphorylation of the central NMD factor UPF1 and robust clearance of NMD targets via two seemingly independent and redundant mRNA degradation branches. Here, we uncover that the loss of the first SMG5-SMG7-dependent pathway also inactivates the second SMG6-dependent branch, indicating an unexpected functional connection between the final NMD steps. Transcriptome-wide analyses of SMG5-SMG7-depleted cells confirm exhaustive NMD inhibition resulting in massive transcriptomic alterations. Intriguingly, we find that the functionally underestimated SMG5 can substitute the role of SMG7 and individually activate NMD. Furthermore, the presence of either SMG5 or SMG7 is sufficient to support SMG6-mediated endonucleolysis of NMD targets. Our data support an improved model for NMD execution that features two-factor authentication involving UPF1 phosphorylation and SMG5-SMG7 recruitment to access SMG6 activity.
真核生物基因表达不断受到翻译偶联的无意义介导的 mRNA 降解 (NMD) 途径的调控。异常的翻译终止导致 NMD 激活,从而导致中央 NMD 因子 UPF1 的磷酸化,并通过两条看似独立且冗余的 mRNA 降解分支对 NMD 靶标进行强烈清除。在这里,我们发现第一个 SMG5-SMG7 依赖性途径的丧失也会使第二个 SMG6 依赖性分支失活,表明最终 NMD 步骤之间存在意想不到的功能联系。对 SMG5-SMG7 耗尽细胞的转录组广泛分析证实了彻底的 NMD 抑制导致大量转录组改变。有趣的是,我们发现功能被低估的 SMG5 可以替代 SMG7 的作用并单独激活 NMD。此外,SMG5 或 SMG7 的存在足以支持 SMG6 介导的 NMD 靶标内切核酸酶的活性。我们的数据支持了一种改进的 NMD 执行模型,该模型具有涉及 UPF1 磷酸化和 SMG5-SMG7 募集以访问 SMG6 活性的双因素认证。