Suppr超能文献

单细胞分析小鼠和人前列腺揭示了具有特殊分布和微环境相互作用的新型成纤维细胞。

Single-cell analysis of mouse and human prostate reveals novel fibroblasts with specialized distribution and microenvironment interactions.

机构信息

Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA.

Southwest Transplant Alliance, Dallas, TX, USA.

出版信息

J Pathol. 2021 Oct;255(2):141-154. doi: 10.1002/path.5751. Epub 2021 Jul 22.

Abstract

Stromal-epithelial interactions are critical to the morphogenesis, differentiation, and homeostasis of the prostate, but the molecular identity and anatomy of discrete stromal cell types is poorly understood. Using single-cell RNA sequencing, we identified and validated the in situ localization of three smooth muscle subtypes (prostate smooth muscle, pericytes, and vascular smooth muscle) and two novel fibroblast subtypes in human prostate. Peri-epithelial fibroblasts (APOD+) wrap around epithelial structures, whereas interstitial fibroblasts (C7+) are interspersed in extracellular matrix. In contrast, the mouse displayed three fibroblast subtypes with distinct proximal-distal and lobe-specific distribution patterns. Statistical analysis of mouse and human fibroblasts showed transcriptional correlation between mouse prostate (C3+) and urethral (Lgr5+) fibroblasts and the human interstitial fibroblast subtype. Both urethral fibroblasts (Lgr5+) and ductal fibroblasts (Wnt2+) in the mouse contribute to a proximal Wnt/Tgfb signaling niche that is absent in human prostate. Instead, human peri-epithelial fibroblasts express secreted WNT inhibitors SFRPs and DKK1, which could serve as a buffer against stromal WNT ligands by creating a localized signaling niche around individual prostate glands. We also identified proximal-distal fibroblast density differences in human prostate that could amplify stromal signaling around proximal prostate ducts. In human benign prostatic hyperplasia, fibroblast subtypes upregulate critical immunoregulatory pathways and show distinct distributions in stromal and glandular phenotypes. A detailed taxonomy of leukocytes in benign prostatic hyperplasia reveals an influx of myeloid dendritic cells, T cells and B cells, resembling a mucosal inflammatory disorder. A receptor-ligand interaction analysis of all cell types revealed a central role for fibroblasts in growth factor, morphogen, and chemokine signaling to endothelia, epithelia, and leukocytes. These data are foundational to the development of new therapeutic targets in benign prostatic hyperplasia. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

摘要

间质-上皮相互作用对于前列腺的形态发生、分化和动态平衡至关重要,但离散的间质细胞类型的分子特征和解剖结构仍知之甚少。我们使用单细胞 RNA 测序鉴定并验证了三种平滑肌亚型(前列腺平滑肌、周细胞和血管平滑肌)和两种新型成纤维细胞亚型在人前列腺中的原位定位。上皮结构周围的上皮细胞(APOD+)包裹上皮结构,而细胞外基质中存在的间质成纤维细胞(C7+)。相比之下,小鼠显示出三种具有不同近-远分布模式和叶特异性分布模式的成纤维细胞亚型。对小鼠和人成纤维细胞的统计分析显示,小鼠前列腺(C3+)和尿道(Lgr5+)成纤维细胞与人类间质成纤维细胞亚型之间存在转录相关性。在小鼠中,尿道成纤维细胞(Lgr5+)和导管成纤维细胞(Wnt2+)有助于近端 Wnt/Tgfb 信号龛,而该信号龛在人前列腺中不存在。相反,人上皮周围成纤维细胞表达分泌型 WNT 抑制剂 SFRP 和 DKK1,这可以通过在单个前列腺周围创建局部信号龛,充当对抗基质 WNT 配体的缓冲剂。我们还在人前列腺中发现了近-远成纤维细胞密度差异,这可能会增强近端前列腺导管周围的基质信号。在人良性前列腺增生中,成纤维细胞亚型上调关键的免疫调节途径,并在基质和腺体表型中表现出不同的分布。良性前列腺增生中白细胞的受体-配体相互作用分析显示,成纤维细胞在生长因子、形态发生因子和趋化因子信号转导到内皮细胞、上皮细胞和白细胞中起着核心作用。这些数据为良性前列腺增生中新型治疗靶点的开发奠定了基础。

相似文献

3
Urethral luminal epithelia are castration-insensitive cells of the proximal prostate.
Prostate. 2020 Aug;80(11):872-884. doi: 10.1002/pros.24020. Epub 2020 Jun 4.
4
Profiling molecular targets of TGF-beta1 in prostate fibroblast-to-myofibroblast transdifferentiation.
Mech Ageing Dev. 2005 Jan;126(1):59-69. doi: 10.1016/j.mad.2004.09.023.
5
Single-cell atlas of epithelial and stromal cell heterogeneity by lobe and strain in the mouse prostate.
Prostate. 2023 Feb;83(3):286-303. doi: 10.1002/pros.24460. Epub 2022 Nov 13.
6
Spatially Restricted Stromal Wnt Signaling Restrains Prostate Epithelial Progenitor Growth through Direct and Indirect Mechanisms.
Cell Stem Cell. 2019 May 2;24(5):753-768.e6. doi: 10.1016/j.stem.2019.03.010. Epub 2019 Apr 11.
9
Androgen and prostatic stroma.
Asian J Androl. 2003 Mar;5(1):19-26.
10
Stromal cells of the human prostate: initial isolation and characterization.
Prostate. 1996 Feb;28(2):89-97. doi: 10.1002/(SICI)1097-0045(199602)28:2<89::AID-PROS3>3.0.CO;2-I.

引用本文的文献

1
2
Cellular cartography reveals mouse prostate organization and determinants of castration resistance.
Proc Natl Acad Sci U S A. 2025 Sep 2;122(35):e2427116122. doi: 10.1073/pnas.2427116122. Epub 2025 Aug 25.
3
EZH2-TTP-mTORC1 Axis Drives Phenotypic Plasticity and Therapeutic Vulnerability in Lethal Prostate Cancer.
bioRxiv. 2025 Aug 11:2025.08.07.669104. doi: 10.1101/2025.08.07.669104.
6
Gland- and cell-level heterogeneity in the prostate: A narrative review of related diseases.
Curr Urol. 2025 Jul;19(4):241-246. doi: 10.1097/CU9.0000000000000269. Epub 2025 Jan 17.
8
scPRINT: pre-training on 50 million cells allows robust gene network predictions.
Nat Commun. 2025 Apr 16;16(1):3607. doi: 10.1038/s41467-025-58699-1.
10
Heat Shock Protein Family A Member 1A Attenuates Apoptosis and Oxidative Stress via ERK/JNK Pathway in Hyperplastic Prostate.
MedComm (2020). 2025 Mar 10;6(3):e70129. doi: 10.1002/mco2.70129. eCollection 2025 Mar.

本文引用的文献

1
A molecular cell atlas of the human lung from single-cell RNA sequencing.
Nature. 2020 Nov;587(7835):619-625. doi: 10.1038/s41586-020-2922-4. Epub 2020 Nov 18.
2
Tissue-Specific Regulation of the Wnt/β-Catenin Pathway by PAGE4 Inhibition of Tankyrase.
Cell Rep. 2020 Jul 21;32(3):107922. doi: 10.1016/j.celrep.2020.107922.
4
Urethral luminal epithelia are castration-insensitive cells of the proximal prostate.
Prostate. 2020 Aug;80(11):872-884. doi: 10.1002/pros.24020. Epub 2020 Jun 4.
5
CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes.
Nat Protoc. 2020 Apr;15(4):1484-1506. doi: 10.1038/s41596-020-0292-x. Epub 2020 Feb 26.
7
Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype.
Nat Biotechnol. 2019 Aug;37(8):907-915. doi: 10.1038/s41587-019-0201-4. Epub 2019 Aug 2.
8
Comprehensive Integration of Single-Cell Data.
Cell. 2019 Jun 13;177(7):1888-1902.e21. doi: 10.1016/j.cell.2019.05.031. Epub 2019 Jun 6.
9
Spatially Restricted Stromal Wnt Signaling Restrains Prostate Epithelial Progenitor Growth through Direct and Indirect Mechanisms.
Cell Stem Cell. 2019 May 2;24(5):753-768.e6. doi: 10.1016/j.stem.2019.03.010. Epub 2019 Apr 11.
10
Functional Heterogeneity of Mouse Prostate Stromal Cells Revealed by Single-Cell RNA-Seq.
iScience. 2019 Mar 29;13:328-338. doi: 10.1016/j.isci.2019.02.032. Epub 2019 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验