Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, United States.
Department of Surgery, University of California San Francisco, San Francisco, CA, United States.
Front Immunol. 2021 Jun 8;12:638066. doi: 10.3389/fimmu.2021.638066. eCollection 2021.
There is an urgent need to identify biomarkers for diagnosis and disease activity monitoring in rheumatoid arthritis (RA). We leveraged publicly available microarray gene expression data in the NCBI GEO database for whole blood (N=1,885) and synovial (N=284) tissues from RA patients and healthy controls. We developed a robust machine learning feature selection pipeline with validation on five independent datasets culminating in 13 genes: , , , , , , , , , , , and which define the RA score and demonstrate its clinical utility: the score tracks the disease activity DAS28 (p = 7e-9), distinguishes osteoarthritis (OA) from RA (OR 0.57, p = 8e-10) and polyJIA from healthy controls (OR 1.15, p = 2e-4) and monitors treatment effect in RA (p = 2e-4). Finally, the immunoblotting analysis of six proteins on an independent cohort confirmed two proteins, /TSG6 and /HSP90.
迫切需要鉴定类风湿关节炎 (RA) 的诊断和疾病活动监测的生物标志物。我们利用 NCBI GEO 数据库中公开的全血 (N=1885) 和滑膜 (N=284) 组织的基因表达微阵列数据,对 RA 患者和健康对照者进行了分析。我们开发了一个稳健的机器学习特征选择管道,并在五个独立数据集上进行了验证,最终确定了 13 个基因: 、 、 、 、 、 、 、 、 、 、 和 ,这些基因定义了 RA 评分,并证明了其临床实用性:该评分可跟踪疾病活动 DAS28(p=7e-9),区分骨关节炎 (OA) 和 RA(OR 0.57,p=8e-10)以及幼年特发性关节炎 (JIA) 与健康对照者(OR 1.15,p=2e-4),并监测 RA 的治疗效果(p=2e-4)。最后,对另一个独立队列的六种蛋白质进行免疫印迹分析,证实了两种蛋白质, /TSG6 和 /HSP90。