Suppr超能文献

基于 CT 的有限元分析预测股骨近端应力场对建模不确定性的敏感性。

Sensitivity of the stress field of the proximal femur predicted by CT-based FE analysis to modeling uncertainties.

机构信息

Department of Civil and Systems Engineering, The Johns Hopkins University, Baltimore, Maryland, USA.

Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

出版信息

J Orthop Res. 2022 May;40(5):1163-1173. doi: 10.1002/jor.25138. Epub 2021 Jul 13.

Abstract

Proximal femur anatomy and bone mineral density vary widely among individuals, precluding the use of one predefined finite element (FE) model to determine the stress field for all proximal femurs. This variability poses a challenge in current prosthetic hip design approach. Given the numerous options for generating computed tomography (CT)-based FE models, selecting the best methods for defining the mechanical behavior of the proximal femur is difficult. In this study, a combination of computational and experimental approaches was used to explore the susceptibility of the predicted stress field of the proximal femur to different combinations of density-elasticity relationships, element type, element size, and calibration error. Our results suggest that FE models with first-order voxelized elements generated by the Keyak and Falkinstein density-elasticity relationship or quadratic tetrahedral elements generated by the Morgan density-elasticity relationship lead to accurate estimations of the mechanical behavior of human femurs. Other combinations of element size, element type, and mathematical relationships produce less accurate results, especially in the cortical bone of the femoral neck and calcar region. The voxelized model was more susceptible to variation of element size and density-elasticity relationships than FE models with quadratic tetrahedral elements. Regardless of element type, the stress fields predicted by the Keyak and Falkinstein and the Morgan relationships were the most robust to calibration error when deriving material density from CT-generated Hounsfield data. These results provide insight into the implementation of a robust platform for designing patient-specific implants capable of maintaining or modifying the stress in bones.

摘要

股骨近端解剖结构和骨密度在个体之间差异很大,因此不能使用一个预先定义的有限元(FE)模型来确定所有股骨近端的应力场。这种变异性给当前的人工髋关节设计方法带来了挑战。考虑到基于计算机断层扫描(CT)的 FE 模型有很多生成方法,因此很难选择最佳方法来确定股骨近端的力学行为。在这项研究中,结合了计算和实验方法,探讨了不同密度-弹性关系、单元类型、单元尺寸和校准误差组合对股骨近端预测应力场的敏感性。我们的结果表明,由 Keyak 和 Falkinstein 密度-弹性关系生成的一阶体素化单元的 FE 模型或由 Morgan 密度-弹性关系生成的二次四面体单元的 FE 模型可以准确估计人体股骨的力学行为。其他单元尺寸、单元类型和数学关系的组合会产生不太准确的结果,尤其是在股骨颈和距骨区域的皮质骨中。体素化模型比具有二次四面体单元的 FE 模型更容易受到单元尺寸和密度-弹性关系变化的影响。无论单元类型如何,从 CT 生成的 Hounsfield 数据推导出材料密度时,Keyak 和 Falkinstein 关系和 Morgan 关系预测的应力场在校准误差方面最为稳健。这些结果为设计能够维持或改变骨骼内应力的患者特异性植入物提供了一个稳健平台的实现提供了深入的了解。

相似文献

1
Sensitivity of the stress field of the proximal femur predicted by CT-based FE analysis to modeling uncertainties.
J Orthop Res. 2022 May;40(5):1163-1173. doi: 10.1002/jor.25138. Epub 2021 Jul 13.
2
Cortical bone mapping improves finite element strain prediction accuracy at the proximal femur.
Bone. 2020 Jul;136:115348. doi: 10.1016/j.bone.2020.115348. Epub 2020 Mar 31.
3
Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations.
J Biomech. 2007;40(16):3688-99. doi: 10.1016/j.jbiomech.2007.06.017. Epub 2007 Aug 13.
4
Concept and development of an orthotropic FE model of the proximal femur.
J Biomech. 2003 Feb;36(2):289-93. doi: 10.1016/s0021-9290(02)00309-3.
6
Constructing anisotropic finite element model of bone from computed tomography (CT).
Biomed Mater Eng. 2014;24(6):2619-26. doi: 10.3233/BME-141078.
7
A new approach to determine the accuracy of morphology-elasticity relationships in continuum FE analyses of human proximal femur.
J Biomech. 2012 Nov 15;45(16):2884-92. doi: 10.1016/j.jbiomech.2012.08.022. Epub 2012 Sep 25.
9
Finite-element modeling of bones from CT data: sensitivity to geometry and material uncertainties.
IEEE Trans Biomed Eng. 2006 Nov;53(11):2194-200. doi: 10.1109/TBME.2006.879473.
10
Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image.
Med Image Anal. 2015 Aug;24(1):125-134. doi: 10.1016/j.media.2015.06.001. Epub 2015 Jun 19.

引用本文的文献

1
Ligament reconstruction for distal radioulnar joint instability with the biomechanical analysis: A case report.
Medicine (Baltimore). 2024 Oct 11;103(41):e40057. doi: 10.1097/MD.0000000000040057.

本文引用的文献

4
Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty.
J Orthop Res. 2017 Aug;35(8):1774-1783. doi: 10.1002/jor.23445. Epub 2016 Oct 4.
7
Finite element simulation of articular contact mechanics with quadratic tetrahedral elements.
J Biomech. 2016 Mar 21;49(5):659-667. doi: 10.1016/j.jbiomech.2016.01.024. Epub 2016 Feb 6.
9
Bone hierarchical structure in three dimensions.
Acta Biomater. 2014 Sep;10(9):3815-26. doi: 10.1016/j.actbio.2014.05.024. Epub 2014 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验