Department of Civil and Systems Engineering, The Johns Hopkins University, Baltimore, Maryland, USA.
Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
J Orthop Res. 2022 May;40(5):1163-1173. doi: 10.1002/jor.25138. Epub 2021 Jul 13.
Proximal femur anatomy and bone mineral density vary widely among individuals, precluding the use of one predefined finite element (FE) model to determine the stress field for all proximal femurs. This variability poses a challenge in current prosthetic hip design approach. Given the numerous options for generating computed tomography (CT)-based FE models, selecting the best methods for defining the mechanical behavior of the proximal femur is difficult. In this study, a combination of computational and experimental approaches was used to explore the susceptibility of the predicted stress field of the proximal femur to different combinations of density-elasticity relationships, element type, element size, and calibration error. Our results suggest that FE models with first-order voxelized elements generated by the Keyak and Falkinstein density-elasticity relationship or quadratic tetrahedral elements generated by the Morgan density-elasticity relationship lead to accurate estimations of the mechanical behavior of human femurs. Other combinations of element size, element type, and mathematical relationships produce less accurate results, especially in the cortical bone of the femoral neck and calcar region. The voxelized model was more susceptible to variation of element size and density-elasticity relationships than FE models with quadratic tetrahedral elements. Regardless of element type, the stress fields predicted by the Keyak and Falkinstein and the Morgan relationships were the most robust to calibration error when deriving material density from CT-generated Hounsfield data. These results provide insight into the implementation of a robust platform for designing patient-specific implants capable of maintaining or modifying the stress in bones.
股骨近端解剖结构和骨密度在个体之间差异很大,因此不能使用一个预先定义的有限元(FE)模型来确定所有股骨近端的应力场。这种变异性给当前的人工髋关节设计方法带来了挑战。考虑到基于计算机断层扫描(CT)的 FE 模型有很多生成方法,因此很难选择最佳方法来确定股骨近端的力学行为。在这项研究中,结合了计算和实验方法,探讨了不同密度-弹性关系、单元类型、单元尺寸和校准误差组合对股骨近端预测应力场的敏感性。我们的结果表明,由 Keyak 和 Falkinstein 密度-弹性关系生成的一阶体素化单元的 FE 模型或由 Morgan 密度-弹性关系生成的二次四面体单元的 FE 模型可以准确估计人体股骨的力学行为。其他单元尺寸、单元类型和数学关系的组合会产生不太准确的结果,尤其是在股骨颈和距骨区域的皮质骨中。体素化模型比具有二次四面体单元的 FE 模型更容易受到单元尺寸和密度-弹性关系变化的影响。无论单元类型如何,从 CT 生成的 Hounsfield 数据推导出材料密度时,Keyak 和 Falkinstein 关系和 Morgan 关系预测的应力场在校准误差方面最为稳健。这些结果为设计能够维持或改变骨骼内应力的患者特异性植入物提供了一个稳健平台的实现提供了深入的了解。