Suppr超能文献

基于反正双曲正弦变换的常见优势比的置信区间。

Confidence intervals for the common odds ratio based on the inverse sinh transformation.

机构信息

Department of Statistics, School of Mathematics and Statistics, Yunnan University, Kunming, China.

Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, China.

出版信息

J Biopharm Stat. 2021 Sep 3;31(5):583-602. doi: 10.1080/10543406.2021.1934856. Epub 2021 Jun 30.

Abstract

This paper proposes two new approximate confidence limit methods for the common odds ratio from multiple 2 × 2 tables. The two new procedures, based on the asymptotic distribution of Woolf estimator and Mantel-Haenszel estimator, associate with inverse sinh transformation. We employ three pseudo-frequency methods to calculate confidence intervals in order to avoid the interval failure caused by the presence of zero cells in multiple 2 × 2 tables. We develop the modified inverse sinh intervals for the common odds ratio which add one pseudo-frequency () to all the cells before computing the point estimate of common odds ratio and another pseudo-frequency () to all the cells before computing the standard error estimate. The simulation is to evaluate the 22 confidence intervals, including Woolf, Mantel-Haenszel, their inverse sinh intervals, and their pseudo-frequency modified inverse sinh intervals, in terms of their coverage probabilities and average log lengths. Simulation results demonstrate that the adjusted inverse sinh intervals by two different pseudo-frequencies perform quite well when is slightly greater than since the coverage probabilities of them are closer to confidence level of 95%. Larger values of lead to narrow intervals and low coverage probabilities. We also find that inverse sinh intervals are shorter than untransformed intervals based on Woolf estimator and Mantel-Haenszel estimator, respectively. These procedures were illustrated with two clinical trials.

摘要

本文提出了两种新的适用于多个 2×2 列联表的共同优势比的近似置信限方法。这两种新方法基于 Woolf 估计量和 Mantel-Haenszel 估计量的渐近分布,并与逆双曲正弦变换相关联。我们采用三种伪频率方法来计算置信区间,以避免由于多个 2×2 列联表中存在零单元格而导致的区间失效。我们为共同优势比开发了修正的逆双曲正弦区间,在计算共同优势比的点估计之前,对所有单元格添加一个伪频率 (),并在计算标准误差估计之前,对所有单元格添加另一个伪频率 ()。模拟是为了评估 22 个置信区间,包括 Woolf、Mantel-Haenszel、它们的逆双曲正弦区间以及它们的伪频率修正逆双曲正弦区间,以评估它们的覆盖概率和平均对数长度。模拟结果表明,当 略大于 时,通过两种不同伪频率进行调整的逆双曲正弦区间表现良好,因为它们的覆盖概率更接近 95%的置信水平。较大的 值会导致区间变窄和覆盖概率降低。我们还发现,逆双曲正弦区间比基于 Woolf 估计量和 Mantel-Haenszel 估计量的未转换区间短。这两个临床试验说明了这些程序。

相似文献

1
Confidence intervals for the common odds ratio based on the inverse sinh transformation.
J Biopharm Stat. 2021 Sep 3;31(5):583-602. doi: 10.1080/10543406.2021.1934856. Epub 2021 Jun 30.
3
Confidence intervals for odds ratio and relative risk based on the inverse hyperbolic sine transformation.
Stat Med. 2013 Jul 20;32(16):2823-36. doi: 10.1002/sim.5714. Epub 2012 Dec 18.
4
Interval estimation of the proportion ratio under multiple matching.
Stat Med. 2005 Apr 30;24(8):1275-85. doi: 10.1002/sim.1989.
5
Notes on interval estimation of the generalized odds ratio under stratified random sampling.
J Biopharm Stat. 2013 May;23(3):513-25. doi: 10.1080/10543406.2011.616977.
6
A comparison of tests of homogeneity of odds ratios in K 2 x 2 tables.
Stat Med. 1989 Dec;8(12):1455-68. doi: 10.1002/sim.4780081205.
7
Eight interval estimators of a common rate ratio under stratified Poisson sampling.
Stat Med. 2004 Apr 30;23(8):1283-96. doi: 10.1002/sim.1725.
8
Estimation of a common odds ratio under binary cluster sampling.
Stat Med. 1995 Jul 30;14(14):1567-76. doi: 10.1002/sim.4780141407.
10
Methods for estimating between-study variance and overall effect in meta-analysis of odds ratios.
Res Synth Methods. 2020 May;11(3):426-442. doi: 10.1002/jrsm.1404. Epub 2020 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验