Suppr超能文献

从[具体来源未给出]中提取的色素的表征及细胞毒性活性,以评估其作为糖果产品生物功能添加剂的潜力。

Characterization and cytotoxic activity of pigment extracted from to assess its potential as bio-functional additive in confectionary products.

作者信息

Sharma Rajan, Ghoshal Gargi

机构信息

Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, 160014 India.

Depertment of Food Science and Technology, Punjab Agricultural University, Ludhiana, India.

出版信息

J Food Sci Technol. 2021 Jul;58(7):2688-2698. doi: 10.1007/s13197-020-04775-x. Epub 2020 Sep 9.

Abstract

The objective of the present investigation was to identify and characterize the pigment produced by yeast strain (MTCC-1403) using food industry residues. Onion peel powder and Mung bean husks were explored as substrate for submerged fermentation at previously optimized conditions in 3-L bioreactor. The pigment extraction was followed by quantification and characterization in terms of UV-visible spectroscopy, Fourier transform infrared spectroscopy, high performance liquid chromatography and fluorescence spectroscopy. Anti-carcinogenic activity of extracted pigment was measured against MCF-7 breast cancer cells. Furthermore, the pigment was used for the development of confectionary products (hard boiled candy and jelly) at different concentrations to evaluate its influence on bioactive properties and functionality. UV-visible spectroscopic reports revealed that torularhodin, -carotene, and torulene were major carotenoids present. In case of anti-carcinogenic activity, cell inhibition of 21.21% was observed with 40 μg of the extracted pigment after 72 h of incubation against MCF-7 cells. Significant influence of extracted pigment on confectionary products was observed for antioxidant activity, carotenoid content, color profile and sensory evaluation.

摘要

本研究的目的是利用食品工业残渣鉴定并表征酵母菌株(MTCC - 1403)产生的色素。在3升生物反应器中,以洋葱皮粉和绿豆壳为底物,在先前优化的条件下进行深层发酵。色素提取后,通过紫外可见光谱、傅里叶变换红外光谱、高效液相色谱和荧光光谱进行定量和表征。测定了提取的色素对MCF - 7乳腺癌细胞的抗癌活性。此外,将该色素用于不同浓度的糖果产品(硬糖和果冻)的开发,以评估其对生物活性和功能的影响。紫外可见光谱报告显示,主要的类胡萝卜素为红酵母红素、β - 胡萝卜素和红酵母烯。在抗癌活性方面,将提取的40μg色素与MCF - 7细胞孵育72小时后,观察到细胞抑制率为21.21%。观察到提取的色素对糖果产品的抗氧化活性、类胡萝卜素含量、颜色特征和感官评价有显著影响。

相似文献

1
2
Optimization of carotenoids production by (MTCC-1403) using agro-industrial waste in bioreactor: A statistical approach.
Biotechnol Rep (Amst). 2019 Dec 5;25:e00407. doi: 10.1016/j.btre.2019.e00407. eCollection 2020 Mar.
3
The role of carotenoids in preventing oxidative damage in the pigmented yeast, Rhodotorula mucilaginosa.
Arch Biochem Biophys. 1989 May 1;270(2):419-31. doi: 10.1016/0003-9861(89)90524-9.
4
Production of torularhodin, torulene, and β-carotene by Rhodotorula yeasts.
Methods Mol Biol. 2012;898:275-83. doi: 10.1007/978-1-61779-918-1_19.
5
Diversity, distribution, and bioprospecting potentials of carotenogenic yeast from mangrove ecosystem.
Arch Microbiol. 2024 Mar 22;206(4):189. doi: 10.1007/s00203-024-03879-8.
7
Isolation and identification of carotenoid-producing sp. from Pinaceae forest ecosystems and optimization of carotenoid production.
Biotechnol Rep (Amst). 2021 Nov 3;32:e00687. doi: 10.1016/j.btre.2021.e00687. eCollection 2021 Dec.
8
Photoprotection by carotenoid pigments in the yeast Rhodotorula mucilaginosa: the role of torularhodin.
Photochem Photobiol Sci. 2010 Aug;9(8):1145-51. doi: 10.1039/c0pp00009d. Epub 2010 Jun 23.
9
Biosynthetic Pathway of Carotenoids in and Strategies for Enhanced Their Production.
J Microbiol Biotechnol. 2019 Apr 28;29(4):507-517. doi: 10.4014/jmb.1801.01022.

引用本文的文献

1
Carotenoid Yeasts and Their Application Potential.
Foods. 2025 May 24;14(11):1866. doi: 10.3390/foods14111866.
2
Microbial production of torulene and its potential applications: a review.
Food Sci Biotechnol. 2024 Dec 9;34(11):2417-2431. doi: 10.1007/s10068-024-01780-0. eCollection 2025 Jul.
3
Nutraceutical delivery vehicles: enhanced stability, bioavailability.
Food Sci Biotechnol. 2024 Sep 17;34(1):31-48. doi: 10.1007/s10068-024-01687-w. eCollection 2025 Jan.
4
Hard Candy Production and Quality Parameters: A review.
Open Res Eur. 2024 Mar 26;4:60. doi: 10.12688/openreseurope.16792.1. eCollection 2024.
6
-alternative sources of natural carotenoids, lipids, and enzymes for industrial use.
Heliyon. 2022 Nov 14;8(11):e11505. doi: 10.1016/j.heliyon.2022.e11505. eCollection 2022 Nov.
7
Rhodotorula sp.-based biorefinery: a source of valuable biomolecules.
Appl Microbiol Biotechnol. 2022 Nov;106(22):7431-7447. doi: 10.1007/s00253-022-12221-5. Epub 2022 Oct 18.

本文引用的文献

1
Optimization of carotenoids production by (MTCC-1403) using agro-industrial waste in bioreactor: A statistical approach.
Biotechnol Rep (Amst). 2019 Dec 5;25:e00407. doi: 10.1016/j.btre.2019.e00407. eCollection 2020 Mar.
4
Characterization of microcapsulated β-carotene formed by complex coacervation using casein and gum tragacanth.
Int J Biol Macromol. 2016 Jun;87:101-13. doi: 10.1016/j.ijbiomac.2016.01.117. Epub 2016 Feb 2.
5
The use of date waste for lactic acid production by a fed-batch culture using Lactobacillus casei subsp. rhamnosus.
Braz J Microbiol. 2015 Jul 1;46(3):893-902. doi: 10.1590/S1517-838246320131067. eCollection 2015 Jul-Sep.
6
Microbial pigments as natural color sources: current trends and future perspectives.
J Food Sci Technol. 2015 Aug;52(8):4669-78. doi: 10.1007/s13197-014-1601-6. Epub 2014 Oct 10.
7
Production of torularhodin, torulene, and β-carotene by Rhodotorula yeasts.
Methods Mol Biol. 2012;898:275-83. doi: 10.1007/978-1-61779-918-1_19.
8
Carotenoid fluorescence in Dunaliella salina.
J Appl Phycol. 2010 Oct;22(5):645-649. doi: 10.1007/s10811-010-9505-y. Epub 2010 Feb 17.
9
In vitro anticancer screening of South African plants.
J Ethnopharmacol. 2008 Oct 28;119(3):455-61. doi: 10.1016/j.jep.2008.07.005. Epub 2008 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验