Suppr超能文献

自制近红外光谱探测器结合多元数据处理对梨内部品质的无损分析

Nondestructive Analysis of Internal Quality in Pears with a Self-Made Near-Infrared Spectrum Detector Combined with Multivariate Data Processing.

作者信息

Wu Xin, Li Guanglin, He Fengyun

机构信息

Department of Agricultural Engineering, College of Engineering and Technology, Southwest University, Chongqing 400715, China.

Department of Electronics and Internet of Things, Chongqing College of Electronic Engineering, Chongqing 401331, China.

出版信息

Foods. 2021 Jun 7;10(6):1315. doi: 10.3390/foods10061315.

Abstract

The consumption of pears has increased, thanks not only to their delicious and juicy flavor, but also their rich nutritional value. Traditional methods of detecting internal qualities (e.g., soluble solid content (SSC), titratable acidity (TA), and taste index (TI)) of pears are reliable, but they are destructive, time-consuming, and polluting. It is necessary to detect internal qualities of pears rapidly and nondestructively by using near-infrared (NIR) spectroscopy. In this study, we used a self-made NIR spectrum detector with an improved variable selection algorithm, named the variable stability and cluster analysis algorithm (VSCAA), to establish a partial least squares regression (PLSR) model to detect SSC content in snow pears. VSCAA is a variable selection method based on the combination of variable stability and cluster analysis to select the infrared spectrum variables. To reflect the advantages of VSCAA, we compared the classical variable selection methods (synergy interval partial least squares (SiPLS), genetic algorithm (GA), successive projections algorithm (SPA), and bootstrapping soft shrinkage (BOSS)) to extract useful wavelengths. The PLSR model, based on the useful variables selected by SiPLS-VSCAA, was optimal for measuring SSC in pears, and the correlation coefficient of calibration (Rc), root mean square error of cross validation (RMSECV), correlation coefficient of prediction (Rp), root mean square error of prediction (RMSEP), and residual predictive deviation (RPD) were 0.942, 0.198%, 0.936, 0.222%, and 2.857, respectively. Then, we applied these variable selection methods to select the characteristic wavelengths for measuring the TA content and TI value in snow pears. The prediction PLSR models, based on the variables selected by GA-BOSS to measure TA and that by GA-VSCAA to detect TI, were the best models, and the Rc, RMSECV, Rp and RPD were 0.931, 0.124%, 0.912, 0.151%, and 2.434 and 0.968, 0.080%, 0.968, 0.089%, and 3.775, respectively. The results showed that the self-made NIR-spectrum detector based on a portable NIR spectrometer with multivariate data processing was a good tool for rapid and nondestructive analysis of internal quality in pears.

摘要

梨的消费量有所增加,这不仅归功于其美味多汁的口感,还得益于其丰富的营养价值。传统的检测梨内部品质(如可溶性固形物含量(SSC)、可滴定酸度(TA)和口感指数(TI))的方法是可靠的,但具有破坏性、耗时且有污染性。因此,有必要利用近红外(NIR)光谱技术对梨的内部品质进行快速无损检测。在本研究中,我们使用了一种自制的近红外光谱探测器,该探测器采用了一种改进的变量选择算法,即变量稳定性和聚类分析算法(VSCAA),来建立偏最小二乘回归(PLSR)模型,以检测雪花梨中的SSC含量。VSCAA是一种基于变量稳定性和聚类分析相结合的变量选择方法,用于选择红外光谱变量。为了体现VSCAA的优势,我们比较了经典的变量选择方法(协同区间偏最小二乘法(SiPLS)、遗传算法(GA)、连续投影算法(SPA)和自助软收缩法(BOSS))来提取有用波长。基于SiPLS-VSCAA选择的有用变量建立的PLSR模型,在测量梨的SSC方面表现最佳,其校正相关系数(Rc)、交叉验证均方根误差(RMSECV)、预测相关系数(Rp)、预测均方根误差(RMSEP)和残差预测偏差(RPD)分别为0.942、0.198%、0.936、0.222%和2.857。然后,我们应用这些变量选择方法来选择用于测量雪花梨中TA含量和TI值的特征波长。基于GA-BOSS选择的变量测量TA以及基于GA-VSCAA选择的变量检测TI所建立的预测PLSR模型是最佳模型,其Rc、RMSECV、Rp和RPD分别为0.931、0.124%、0.912、0.151%和2.434,以及0.968、0.080%、0.968、0.089%和3.775。结果表明,基于便携式近红外光谱仪并结合多变量数据处理的自制近红外光谱探测器是快速无损分析梨内部品质的良好工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cdc/8226885/78eb00f15811/foods-10-01315-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验