Suppr超能文献

使用先进的壁面模型大涡模拟技术预测湍流通道流中的共轭传热

Predictions of Conjugate Heat Transfer in Turbulent Channel Flow Using Advanced Wall-Modeled Large Eddy Simulation Techniques.

作者信息

Li Yongxiang, Ries Florian, Nishad Kaushal, Sadiki Amsini

机构信息

Department of Mechanical Engineering, Institute of Reactive Flows and Diagnostics, Technical University of Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany.

Department of Mechanical Engineering, Institute of Energy and Power Plant Technology, Technical University of Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany.

出版信息

Entropy (Basel). 2021 Jun 7;23(6):725. doi: 10.3390/e23060725.

Abstract

In this paper, advanced wall-modeled large eddy simulation (LES) techniques are used to predict conjugate heat transfer processes in turbulent channel flow. Thereby, the thermal energy transfer process involves an interaction of conduction within a solid body and convection from the solid surface by fluid motion. The approaches comprise a two-layer RANS-LES approach (zonal LES), a hybrid RANS-LES representative, the so-called improved delayed detached eddy simulation method (IDDES) and a non-equilibrium wall function model (WFLES), respectively. The results obtained are evaluated in comparison with direct numerical simulation (DNS) data and wall-resolved LES including thermal cases of large Reynolds numbers where DNS data are not available in the literature. It turns out that zonal LES, IDDES and WFLES are able to predict heat and fluid flow statistics along with wall shear stresses and Nusselt numbers accurately and that are physically consistent. Furthermore, it is found that IDDES, WFLES and zonal LES exhibit significantly lower computational costs than wall-resolved LES. Since IDDES and especially zonal LES require considerable extra work to generate numerical grids, this study indicates in particular that WFLES offers a promising near-wall modeling strategy for LES of conjugated heat transfer problems. Finally, an entropy generation analysis using the various models showed that the viscous entropy production is zero inside the solid region, peaks at the solid-fluid interface and decreases rapidly with increasing wall distance within the fluid region. Except inside the solid region, where steep temperature gradients lead to high (thermal) entropy generation rates, a similar behavior is monitored for the entropy generation by heat transfer process.

摘要

在本文中,采用先进的壁面模型大涡模拟(LES)技术来预测湍流通道流动中的共轭传热过程。因此,热能传递过程涉及固体内部的传导与流体运动引起的固体表面对流之间的相互作用。这些方法分别包括两层RANS-LES方法(分区LES)、一种混合RANS-LES代表方法,即所谓的改进延迟分离涡模拟方法(IDDES)和一种非平衡壁面函数模型(WFLES)。将获得的结果与直接数值模拟(DNS)数据以及壁面解析LES进行比较评估,壁面解析LES涵盖了文献中没有DNS数据的大雷诺数热工况。结果表明,分区LES、IDDES和WFLES能够准确预测热流和流体流动统计量以及壁面剪应力和努塞尔数,并且在物理上是一致的。此外,发现IDDES、WFLES和分区LES的计算成本明显低于壁面解析LES。由于IDDES,特别是分区LES需要大量额外工作来生成数值网格,本研究特别表明,WFLES为共轭传热问题的LES提供了一种有前景的近壁建模策略。最后,使用各种模型进行的熵产生分析表明,粘性熵产生在固体区域内为零,在固液界面处达到峰值,并在流体区域内随着与壁面距离的增加而迅速减小。除了在固体区域内,陡峭的温度梯度导致高(热)熵产生率外,传热过程的熵产生也呈现类似的行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67e4/8230178/b72b5e5b32a1/entropy-23-00725-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验