Suppr超能文献

从高密度脑电图数据中检测静息态功能连接性:头部建模策略的影响。

Detection of Resting-State Functional Connectivity from High-Density Electroencephalography Data: Impact of Head Modeling Strategies.

作者信息

Taberna Gaia Amaranta, Samogin Jessica, Marino Marco, Mantini Dante

机构信息

Research Center for Motor Control and Neuroplasticity, KU Leuven, 3001 Leuven, Belgium.

Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, 30126 Venice, Italy.

出版信息

Brain Sci. 2021 Jun 3;11(6):741. doi: 10.3390/brainsci11060741.

Abstract

Recent technological advances have been permitted to use high-density electroencephalography (hdEEG) for the estimation of functional connectivity and the mapping of resting-state networks (RSNs). The reliable estimate of activity and connectivity from hdEEG data relies on the creation of an accurate head model, defining how neural currents propagate from the cortex to the sensors placed over the scalp. To the best of our knowledge, no study has been conducted yet to systematically test to what extent head modeling accuracy impacts on EEG-RSN reconstruction. To address this question, we used 256-channel hdEEG data collected in a group of young healthy participants at rest. We first estimated functional connectivity in EEG-RSNs by means of band-limited power envelope correlations, using neural activity estimated with an optimized analysis workflow. Then, we defined a series of head models with different levels of complexity, specifically testing the effect of different electrode positioning techniques and head tissue segmentation methods. We observed that robust EEG-RSNs can be obtained using a realistic head model, and that inaccuracies due to head tissue segmentation impact on RSN reconstruction more than those due to electrode positioning. Additionally, we found that EEG-RSN robustness to head model variations had space and frequency specificity. Overall, our results may contribute to defining a benchmark for assessing the reliability of hdEEG functional connectivity measures.

摘要

近年来的技术进步使得使用高密度脑电图(hdEEG)来估计功能连接性和绘制静息态网络(RSNs)成为可能。从hdEEG数据中可靠地估计活动和连接性依赖于创建一个准确的头部模型,该模型定义了神经电流如何从皮层传播到放置在头皮上的传感器。据我们所知,尚未有研究系统地测试头部建模精度对EEG-RSN重建的影响程度。为了解决这个问题,我们使用了一组年轻健康参与者在静息状态下收集的256通道hdEEG数据。我们首先通过带限功率包络相关性来估计EEG-RSN中的功能连接性,使用通过优化分析工作流程估计的神经活动。然后,我们定义了一系列具有不同复杂程度的头部模型,特别测试了不同电极定位技术和头部组织分割方法的效果。我们观察到,使用逼真的头部模型可以获得稳健的EEG-RSN,并且由于头部组织分割导致的不准确对RSN重建的影响大于电极定位导致的不准确。此外,我们发现EEG-RSN对头部模型变化的稳健性具有空间和频率特异性。总体而言,我们的结果可能有助于为评估hdEEG功能连接性测量的可靠性定义一个基准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7218/8226780/88b53c401b11/brainsci-11-00741-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验