Suppr超能文献

用于药品质量控制的干燥液滴的纹理分析。

Texture Analysis of Dried Droplets for the Quality Control of Medicines.

机构信息

Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas 29050, Mexico.

Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Avenida Universidad 3000, México D.F. 04510, Mexico.

出版信息

Sensors (Basel). 2021 Jun 11;21(12):4048. doi: 10.3390/s21124048.

Abstract

The quality control of medicines guarantees the effectiveness of treatments for diseases. We explore the use of texture analysis of patterns in dried droplets as a tool to readily detect both impurities and changes in drug concentration. Four types of medicines associated with different routes of administration were analyzed: Methotrexate, Ciprofloxacin, Clonazepam, and Budesonide. We use NaCl and a hot substrate at 63 ∘C to promote aggregate formation and to reduce droplet drying time. Depending on the medicine, optical microscopy reveals different complex aggregates such as circular to oval splatters, fern-like islands, crown shapes, crown needle-like and bump-like patterns as well as dendritic branched and star-like crystals. We use some physical features of the stains (as the stain diameter and superficial area) and gray level co-occurrence matrix (GLCM) to characterize patterns of dried droplets. Finally, we show that structural analysis of stains can achieve 95% accuracy in identifying medicines with 30% water dilution, while it achieves 99% accuracy in detecting drugs with 10% other substances.

摘要

药品质量控制可确保疾病治疗的有效性。我们探讨了使用干燥液滴图案的纹理分析作为一种工具,以便快速检测杂质和药物浓度变化。分析了四种不同给药途径的药品:甲氨蝶呤、环丙沙星、氯硝西泮和布地奈德。我们使用 NaCl 和 63 ∘C 的热基底来促进聚集形成并缩短液滴干燥时间。根据药物的不同,光学显微镜显示出不同的复杂聚集,如圆形到椭圆形的溅出物、蕨类岛、冠形、冠针状和块状图案以及树枝状分支和星形晶体。我们使用污渍的一些物理特征(如污渍直径和表面积)和灰度共生矩阵(GLCM)来描述干燥液滴的图案。最后,我们表明,结构分析可以实现 95%的准确率,识别 30%水稀释的药物,而在检测 10%其他物质的药物时,准确率达到 99%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1dc/8231125/7a0737505e33/sensors-21-04048-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验