Vectech, Baltimore, MD, 21211, USA.
Center for Bioengineering Innovation and Design, Biomedical Engineering Department, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, 21218, USA.
Sci Rep. 2021 Jul 1;11(1):13656. doi: 10.1038/s41598-021-92891-9.
With over 3500 mosquito species described, accurate species identification of the few implicated in disease transmission is critical to mosquito borne disease mitigation. Yet this task is hindered by limited global taxonomic expertise and specimen damage consistent across common capture methods. Convolutional neural networks (CNNs) are promising with limited sets of species, but image database requirements restrict practical implementation. Using an image database of 2696 specimens from 67 mosquito species, we address the practical open-set problem with a detection algorithm for novel species. Closed-set classification of 16 known species achieved 97.04 ± 0.87% accuracy independently, and 89.07 ± 5.58% when cascaded with novelty detection. Closed-set classification of 39 species produces a macro F1-score of 86.07 ± 1.81%. This demonstrates an accurate, scalable, and practical computer vision solution to identify wild-caught mosquitoes for implementation in biosurveillance and targeted vector control programs, without the need for extensive image database development for each new target region.
已描述的蚊子种类超过 3500 种,准确识别少数几种与疾病传播有关的物种对于减轻蚊媒疾病至关重要。然而,由于全球分类学专业知识有限以及常见捕获方法中普遍存在的标本损坏,这一任务受到了阻碍。卷积神经网络(CNNs)在物种数量有限的情况下很有前景,但图像数据库的要求限制了其实际应用。我们使用一个包含 67 种蚊子 2696 个标本的图像数据库,通过一个针对新物种的检测算法解决了实用的开放式物种识别问题。16 种已知物种的封闭式分类准确率独立达到 97.04±0.87%,与新颖性检测相结合时达到 89.07±5.58%。39 种物种的封闭式分类得到的宏观 F1 得分为 86.07±1.81%。这证明了一种准确、可扩展且实用的计算机视觉解决方案,可以识别野外捕获的蚊子,用于生物监测和有针对性的病媒控制计划,而无需为每个新的目标区域开发广泛的图像数据库。