Suppr超能文献

成骨细胞的多源性起源。

The diverse origin of bone-forming osteoblasts.

机构信息

Oral Health Science Center, Tokyo Dental College, Tokyo, Japan.

University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA.

出版信息

J Bone Miner Res. 2021 Aug;36(8):1432-1447. doi: 10.1002/jbmr.4410. Epub 2021 Jul 12.

Abstract

Osteoblasts are the only cells that can give rise to bones in vertebrates. Thus, one of the most important functions of these metabolically active cells is mineralized matrix production. Because osteoblasts have a limited lifespan, they must be constantly replenished by preosteoblasts, their immediate precursors. Because disruption of the regulation of bone-forming osteoblasts results in a variety of bone diseases, a better understanding of the origin of these cells by defining the mechanisms of bone development, remodeling, and regeneration is central to the development of novel therapeutic approaches. In recent years, substantial new insights into the origin of osteoblasts-largely owing to rapid technological advances in murine lineage-tracing approaches and other single-cell technologies-have been obtained. Collectively, these findings indicate that osteoblasts involved in bone formation under various physiological, pathological, and therapeutic conditions can be obtained from numerous sources. The origins of osteoblasts include, but are not limited to, chondrocytes in the growth plate, stromal cells in the bone marrow, quiescent bone-lining cells on the bone surface, and specialized fibroblasts in the craniofacial structures, such as sutures and periodontal ligaments. Because osteoblasts can be generated from local cellular sources, bones can flexibly respond to regenerative and anabolic cues. However, whether osteoblasts derived from different cellular sources have distinct functions remains to be investigated. Currently, we are at the initial stage to aptly unravel the incredible diversity of the origins of bone-forming osteoblasts. © 2021 American Society for Bone and Mineral Research (ASBMR).

摘要

成骨细胞是脊椎动物中唯一能生成骨骼的细胞。因此,这些代谢活跃的细胞的最重要功能之一是产生矿化基质。由于成骨细胞的寿命有限,它们必须由前成骨细胞不断补充,前成骨细胞是它们的直接前体细胞。由于成骨细胞形成骨骼的调节机制紊乱会导致多种骨骼疾病,因此更好地理解这些细胞的起源,通过定义骨骼发育、重塑和再生的机制,对于开发新的治疗方法至关重要。近年来,由于在鼠谱系追踪方法和其他单细胞技术方面的快速技术进步,人们对成骨细胞的起源有了更深入的了解。总的来说,这些发现表明,在各种生理、病理和治疗条件下参与骨形成的成骨细胞可以来源于许多来源。成骨细胞的来源包括但不限于生长板中的软骨细胞、骨髓中的基质细胞、骨表面静止的骨衬细胞以及颅面结构(如缝和牙周韧带)中的专门成纤维细胞。由于成骨细胞可以由局部细胞来源产生,因此骨骼可以灵活地响应再生和合成代谢的信号。然而,源自不同细胞来源的成骨细胞是否具有不同的功能仍有待研究。目前,我们正处于恰当揭示成骨细胞形成的起源的令人难以置信的多样性的初始阶段。© 2021 美国骨骼矿物质研究学会(ASBMR)。

相似文献

1
The diverse origin of bone-forming osteoblasts.
J Bone Miner Res. 2021 Aug;36(8):1432-1447. doi: 10.1002/jbmr.4410. Epub 2021 Jul 12.
2
Skeletal stem and progenitor cells in bone development and repair.
J Bone Miner Res. 2024 Jul 23;39(6):633-654. doi: 10.1093/jbmr/zjae069.
3
Growth Plate Chondrocytes: Skeletal Development, Growth and Beyond.
Int J Mol Sci. 2019 Nov 29;20(23):6009. doi: 10.3390/ijms20236009.
4
Quiescent Bone Lining Cells Are a Major Source of Osteoblasts During Adulthood.
Stem Cells. 2016 Dec;34(12):2930-2942. doi: 10.1002/stem.2474. Epub 2016 Aug 29.
5
The Origin and Fate of Chondrocytes: Cell Plasticity in Physiological Setting.
Curr Osteoporos Rep. 2023 Dec;21(6):815-824. doi: 10.1007/s11914-023-00827-1. Epub 2023 Oct 14.
7
Skeletal stem cells: insights into maintaining and regenerating the skeleton.
Development. 2020 Mar 11;147(5):dev179325. doi: 10.1242/dev.179325.
8
Piezo1 Inactivation in Chondrocytes Impairs Trabecular Bone Formation.
J Bone Miner Res. 2021 Feb;36(2):369-384. doi: 10.1002/jbmr.4198. Epub 2020 Nov 12.
9
Growth Plate Borderline Chondrocytes Behave as Transient Mesenchymal Precursor Cells.
J Bone Miner Res. 2019 Aug;34(8):1387-1392. doi: 10.1002/jbmr.3719. Epub 2019 May 6.
10
From Stem Cells to Bone-Forming Cells.
Int J Mol Sci. 2021 Apr 13;22(8):3989. doi: 10.3390/ijms22083989.

引用本文的文献

1
Intracellular survival of in macrophages during osteomyelitis.
Virulence. 2025 Dec;16(1):2553789. doi: 10.1080/21505594.2025.2553789. Epub 2025 Sep 1.
3
Addressing osteoblast senescence: Molecular pathways and the frontier of anti-ageing treatments.
Clin Transl Med. 2025 Jul;15(7):e70417. doi: 10.1002/ctm2.70417.
6
The effects and mechanisms of electromagnetic fields on bone remodeling: From clinical to laboratory.
J Orthop Translat. 2025 Mar 24;52:14-26. doi: 10.1016/j.jot.2025.03.003. eCollection 2025 May.
8
4-Aminopyridine Promotes BMP2 Expression and Accelerates Tibial Fracture Healing in Mice.
J Bone Joint Surg Am. 2025 May 7;107(9):936-947. doi: 10.2106/JBJS.24.00311. Epub 2025 Mar 26.
10

本文引用的文献

1
A mechanosensitive peri-arteriolar niche for osteogenesis and lymphopoiesis.
Nature. 2021 Mar;591(7850):438-444. doi: 10.1038/s41586-021-03298-5. Epub 2021 Feb 24.
2
Heterogeneity of murine periosteum progenitors involved in fracture healing.
Elife. 2021 Feb 9;10:e58534. doi: 10.7554/eLife.58534.
3
Sclerostin Antibody Administration Increases the Numbers of Sox9creER+ Skeletal Precursors and Their Progeny.
J Bone Miner Res. 2021 Apr;36(4):757-767. doi: 10.1002/jbmr.4238. Epub 2021 Jan 23.
5
Gli1+ Periodontium Stem Cells Are Regulated by Osteocytes and Occlusal Force.
Dev Cell. 2020 Sep 14;54(5):639-654.e6. doi: 10.1016/j.devcel.2020.06.006. Epub 2020 Jul 10.
7
Growth plate skeletal stem cells and their transition from cartilage to bone.
Bone. 2020 Jul;136:115359. doi: 10.1016/j.bone.2020.115359. Epub 2020 Apr 7.
8
Skeletal Stem Cells for Bone Development and Repair: Diversity Matters.
Curr Osteoporos Rep. 2020 Jun;18(3):189-198. doi: 10.1007/s11914-020-00572-9.
9
Perivascular osteoprogenitors are associated with transcortical channels of long bones.
Stem Cells. 2020 Jun;38(6):769-781. doi: 10.1002/stem.3159. Epub 2020 Feb 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验