Kelly Samuel M, Waterhouse Amy F, Savage Anna C
Large Lakes Observatory and Physics & Astronomy Department University of Minnesota Duluth Duluth MN USA.
Scripps Institution of Oceanography University of California La Jolla San Diego CA USA.
Geophys Res Lett. 2021 Jun 16;48(11):e2020GL091692. doi: 10.1029/2020GL091692. Epub 2021 Jun 5.
A reduced-physics model is employed at 1/25° to 1/100° global resolution to determine (a) if linear dynamics can reproduce the observed low-mode M internal tide, (b) internal-tide sensitivity to bathymetry, stratification, surface tides, and dissipation parameterizations, and (c) the amount of power transferred to the nonstationary internal tide. The simulations predict 200 GW of mode-1 internal-tide generation, consistent with a general circulation model and semianalytical theory. Mode-1 energy is sensitive to damping, but a simulation using parameterizations for wave drag and wave-mean interaction predicts 84% of satellite observed sea-surface height amplitude variance on a 1° × 1° grid. The simulation energy balance indicates that 16% of stationary mode-1 energy is scattered to modes 2-4 and negligible energy propagates onto the shelves. The remaining 84% of energy is lost through parameterizations for high-mode scattering over rough topography (54%) and wave-mean interactions that transfer energy to the nonstationary internal tide (29%).
在1/25°至1/100°的全球分辨率下采用降阶物理模型,以确定:(a) 线性动力学能否再现观测到的低阶M内潮;(b) 内潮对地形、分层、表面潮汐和耗散参数化的敏感性;(c) 传递到非定常内潮的能量。模拟预测1阶内潮生成功率为200吉瓦,这与一个环流模型和半解析理论一致。1阶能量对阻尼敏感,但使用波阻力和波-平均相互作用参数化的模拟预测,在1°×1°网格上,海面高度振幅方差的84%与卫星观测结果相符。模拟能量平衡表明,16%的定常1阶能量散射到2-4阶,传播到陆架上的能量可忽略不计。其余84%的能量通过粗糙地形上高阶散射的参数化(54%)和将能量传递到非定常内潮的波-平均相互作用(29%)而损失。