Suppr超能文献

基于肿瘤相关巨噬细胞负荷的肿瘤纳米影像组学鉴别方法

A Nanoradiomics Approach for Differentiation of Tumors Based on Tumor-Associated Macrophage Burden.

机构信息

Edward B. Singleton Department of Radiology, Texas Children's Hospital, Houston, TX, USA.

Department of Radiology, Baylor College of Medicine, Houston, TX, USA.

出版信息

Contrast Media Mol Imaging. 2021 Jun 14;2021:6641384. doi: 10.1155/2021/6641384. eCollection 2021.

Abstract

OBJECTIVE

Tumor-associated macrophages (TAMs) within the tumor immune microenvironment (TiME) of solid tumors play an important role in treatment resistance and disease recurrence. The purpose of this study was to investigate if nanoradiomics (radiomic analysis of nanoparticle contrast-enhanced images) can differentiate tumors based on TAM burden.

MATERIALS AND METHODS

In vivo studies were performed in transgenic mouse models of neuroblastoma with low ( = 11) and high ( = 10) tumor-associated macrophage (TAM) burden. Animals underwent delayed nanoparticle contrast-enhanced CT (n-CECT) imaging at 4 days after intravenous administration of liposomal-iodine agent (1.1 g/kg). CT imaging-derived conventional tumor metrics (tumor volume and CT attenuation) were computed for segmented tumor CT datasets. Nanoradiomic analysis was performed using a PyRadiomics workflow implemented in the quantitative image feature pipeline (QIFP) server containing 900 radiomic features (RFs). RF selection was performed under supervised machine learning using a nonparametric neighborhood component method. A 5-fold validation was performed using a set of linear and nonlinear classifiers for group separation. Statistical analysis was performed using the Kruskal-Wallis test.

RESULTS

N-CECT imaging demonstrated heterogeneous patterns of signal enhancement in low and high TAM tumors. CT imaging-derived conventional tumor metrics showed no significant differences ( > 0.05) in tumor volume between low and high TAM tumors. Tumor CT attenuation was not significantly different ( > 0.05) between low and high TAM tumors. Machine learning-augmented nanoradiomic analysis revealed two RFs that differentiated ( < 0.002) low TAM and high TAM tumors. The RFs were used to build a linear classifier that demonstrated very high accuracy and further confirmed by 5-fold cross-validation.

CONCLUSIONS

Imaging-derived conventional tumor metrics were unable to differentiate tumors with varying TAM burden; however, nanoradiomic analysis revealed texture differences and enabled differentiation of low and high TAM tumors.

摘要

目的

实体瘤肿瘤免疫微环境(TiME)中的肿瘤相关巨噬细胞(TAMs)在治疗抵抗和疾病复发中发挥重要作用。本研究旨在探讨纳米辐射组学(纳米粒子对比增强图像的辐射组学分析)是否可以根据 TAM 负担区分肿瘤。

材料和方法

在具有低( = 11)和高( = 10)肿瘤相关巨噬细胞(TAM)负担的神经母细胞瘤转基因小鼠模型中进行了体内研究。动物在静脉注射脂质体碘剂(1.1 g/kg)后 4 天接受延迟纳米粒子对比增强 CT(n-CECT)成像。对分割的肿瘤 CT 数据集计算 CT 成像衍生的常规肿瘤指标(肿瘤体积和 CT 衰减)。使用 PyRadiomics 工作流程在定量图像特征管道(QIFP)服务器中进行纳米辐射组学分析,该流程包含 900 个辐射组学特征(RFs)。使用非参数邻域成分方法在监督机器学习下进行 RF 选择。使用一组线性和非线性分类器进行 5 折验证以进行组分离。使用 Kruskal-Wallis 检验进行统计分析。

结果

n-CECT 成像显示低 TAM 和高 TAM 肿瘤的信号增强具有异质模式。CT 成像衍生的常规肿瘤指标显示低 TAM 和高 TAM 肿瘤之间的肿瘤体积无显著差异(> 0.05)。低 TAM 和高 TAM 肿瘤之间的肿瘤 CT 衰减无显著差异(> 0.05)。机器学习增强的纳米辐射组学分析揭示了两个区分(< 0.002)低 TAM 和高 TAM 肿瘤的 RF。使用 RF 构建了一个线性分类器,该分类器表现出非常高的准确性,并通过 5 折交叉验证进一步证实。

结论

成像衍生的常规肿瘤指标无法区分具有不同 TAM 负担的肿瘤;然而,纳米辐射组学分析揭示了纹理差异,并能够区分低 TAM 和高 TAM 肿瘤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7681/8216795/5135778ed489/CMMI2021-6641384.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验