KU Leuven, Department of Microbial and Molecular Systems, Leuven, Belgium.
KU Leuven, Department of Cellular and Molecular Medicine, Leuven, Belgium.
mBio. 2021 Aug 31;12(4):e0112921. doi: 10.1128/mBio.01129-21. Epub 2021 Jul 6.
Despite our extensive knowledge of the genetic regulation of heat shock proteins (HSPs), the evolutionary routes that allow bacteria to adaptively tune their HSP levels and corresponding proteostatic robustness have been explored less. In this report, directed evolution experiments using the Escherichia coli model system unexpectedly revealed that seemingly random single mutations in its gene can confer significant heat resistance. Closer examination, however, indicated that these mutations create folding-deficient and aggregation-prone TnaA variants that in turn can endogenously and preemptively trigger HSP expression to cause heat resistance. These findings, importantly, demonstrate that even erosive mutations with disruptive effects on protein structure and functionality can still yield true gain-of-function alleles with a selective advantage in adaptive evolution.
尽管我们对热休克蛋白(HSPs)的遗传调控有了广泛的了解,但允许细菌自适应地调整其 HSP 水平和相应的蛋白质稳定性的进化途径还没有得到充分探索。在本报告中,使用大肠杆菌模型系统进行的定向进化实验出人意料地揭示,其 基因中的看似随机的单个突变可以赋予细菌显著的耐热性。然而,进一步的研究表明,这些突变产生了折叠缺陷和易于聚集的 TnaA 变体,这些变体反过来可以内源性地和预先触发 HSP 表达,从而导致耐热性。这些发现重要地表明,即使是对蛋白质结构和功能具有破坏性影响的侵蚀性突变,仍然可以产生具有适应性进化选择优势的真正功能获得性等位基因。