Suppr超能文献

基于精确力场的 SAMPL7 分子辛醇-水分配系数的计算。

Precise force-field-based calculations of octanol-water partition coefficients for the SAMPL7 molecules.

机构信息

Department of Physics, Arizona State University, P.O. Box 871504, Tempe, AZ, 85287-1504, USA.

Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Labex LERMIT, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette, France.

出版信息

J Comput Aided Mol Des. 2021 Jul;35(7):853-870. doi: 10.1007/s10822-021-00407-4. Epub 2021 Jul 7.

Abstract

We predicted water-octanol partition coefficients for the molecules in the SAMPL7 challenge with explicit solvent classical molecular dynamics (MD) simulations. Water hydration free energies and octanol solvation free energies were calculated with a windowed alchemical free energy approach. Three commonly used force fields (AMBER GAFF, CHARMM CGenFF, OPLS-AA) were tested. Special emphasis was placed on converging all simulations, using a criterion developed for the SAMPL6 challenge. In aggregate, over 1000 [Formula: see text]s of simulations were performed, with some free energy windows remaining not fully converged even after 1 [Formula: see text]s of simulation time. Nevertheless, the amount of sampling produced [Formula: see text] estimates with a precision of 0.1 log units or better for converged simulations. Despite being probably as fully sampled as can expected and is feasible, the agreement with experiment remained modest for all force fields, with no force field performing better than 1.6 in root mean squared error. Overall, our results indicate that a large amount of sampling is necessary to produce precise [Formula: see text] predictions for the SAMPL7 compounds and that high precision does not necessarily lead to high accuracy. Thus, fundamental problems remain to be solved for physics-based [Formula: see text] predictions.

摘要

我们使用显溶剂经典分子动力学(MD)模拟预测了 SAMPL7 挑战赛中分子的水-辛醇分配系数。通过带窗口的变分自由能方法计算了水合自由能和辛醇溶剂化自由能。测试了三种常用的力场(AMBER GAFF、CHARMM CGenFF、OPLS-AA)。特别强调了使用为 SAMPL6 挑战赛开发的标准来收敛所有模拟。总的来说,进行了超过 1000 个[Formula: see text]的模拟,即使在 1 [Formula: see text]的模拟时间后,某些自由能窗口仍未完全收敛。尽管可能已经进行了尽可能充分的采样,并且是可行的,但对于所有力场,与实验的一致性仍然相当,没有一个力场的均方根误差优于 1.6。总的来说,我们的结果表明,对于 SAMPL7 化合物,需要进行大量采样才能产生精确的[Formula: see text]预测,并且高精度不一定导致高准确性。因此,基于物理的[Formula: see text]预测仍然存在需要解决的基本问题。

相似文献

1
Precise force-field-based calculations of octanol-water partition coefficients for the SAMPL7 molecules.
J Comput Aided Mol Des. 2021 Jul;35(7):853-870. doi: 10.1007/s10822-021-00407-4. Epub 2021 Jul 7.
4
SAMPL6 Octanol-water partition coefficients from alchemical free energy calculations with MBIS atomic charges.
J Comput Aided Mol Des. 2020 Apr;34(4):327-334. doi: 10.1007/s10822-020-00281-6. Epub 2020 Jan 20.
5
SAMPL6 blind predictions of water-octanol partition coefficients using nonequilibrium alchemical approaches.
J Comput Aided Mol Des. 2020 Apr;34(4):371-384. doi: 10.1007/s10822-019-00233-9. Epub 2019 Oct 17.
6
Predicting octanol/water partition coefficients for the SAMPL6 challenge using the SM12, SM8, and SMD solvation models.
J Comput Aided Mol Des. 2020 May;34(5):575-588. doi: 10.1007/s10822-020-00293-2. Epub 2020 Jan 30.
7
Predicting octanol/water partition coefficients and pKa for the SAMPL7 challenge using the SM12, SM8 and SMD solvation models.
J Comput Aided Mol Des. 2022 Sep;36(9):687-705. doi: 10.1007/s10822-022-00474-1. Epub 2022 Sep 19.
8
Assessing the accuracy of octanol-water partition coefficient predictions in the SAMPL6 Part II log P Challenge.
J Comput Aided Mol Des. 2020 Apr;34(4):335-370. doi: 10.1007/s10822-020-00295-0. Epub 2020 Feb 27.
9
Energy-entropy prediction of octanol-water logP of SAMPL7 N-acyl sulfonamide bioisosters.
J Comput Aided Mol Des. 2021 Jul;35(7):831-840. doi: 10.1007/s10822-021-00401-w. Epub 2021 Jul 10.
10
Octanol-water partition coefficient measurements for the SAMPL6 blind prediction challenge.
J Comput Aided Mol Des. 2020 Apr;34(4):405-420. doi: 10.1007/s10822-019-00271-3. Epub 2019 Dec 19.

引用本文的文献

1
IMERGE-FEP: Improving Relative Free Energy Calculation Convergence with Chemical Intermediates.
J Phys Chem B. 2025 Mar 6;129(9):2370-2379. doi: 10.1021/acs.jpcb.4c07156. Epub 2025 Feb 20.
2
Calculated hydration free energies become less accurate with increases in molecular weight.
PLoS One. 2024 Sep 19;19(9):e0309996. doi: 10.1371/journal.pone.0309996. eCollection 2024.
4
Evaluation of log P, pK, and log D predictions from the SAMPL7 blind challenge.
J Comput Aided Mol Des. 2021 Jul;35(7):771-802. doi: 10.1007/s10822-021-00397-3. Epub 2021 Jun 24.

本文引用的文献

2
LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands.
Nucleic Acids Res. 2017 Jul 3;45(W1):W331-W336. doi: 10.1093/nar/gkx312.
3
Prediction of cyclohexane-water distribution coefficients for the SAMPL5 data set using molecular dynamics simulations with the OPLS-AA force field.
J Comput Aided Mol Des. 2016 Nov;30(11):1045-1058. doi: 10.1007/s10822-016-9949-5. Epub 2016 Aug 31.
4
A Simple Method for Automated Equilibration Detection in Molecular Simulations.
J Chem Theory Comput. 2016 Apr 12;12(4):1799-805. doi: 10.1021/acs.jctc.5b00784. Epub 2016 Mar 23.
5
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
6
P-LINCS:  A Parallel Linear Constraint Solver for Molecular Simulation.
J Chem Theory Comput. 2008 Jan;4(1):116-22. doi: 10.1021/ct700200b.
7
Guidelines for the analysis of free energy calculations.
J Comput Aided Mol Des. 2015 May;29(5):397-411. doi: 10.1007/s10822-015-9840-9. Epub 2015 Mar 26.
8
Prediction of hydration free energies for the SAMPL4 diverse set of compounds using molecular dynamics simulations with the OPLS-AA force field.
J Comput Aided Mol Des. 2014 Mar;28(3):265-76. doi: 10.1007/s10822-014-9727-1. Epub 2014 Feb 21.
9
Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing.
J Chem Inf Model. 2012 Dec 21;52(12):3144-54. doi: 10.1021/ci300363c. Epub 2012 Nov 28.
10
Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges.
J Chem Inf Model. 2012 Dec 21;52(12):3155-68. doi: 10.1021/ci3003649. Epub 2012 Nov 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验