Suppr超能文献

促进预防干预中增长混合模型的收敛。

Facilitating Growth Mixture Model Convergence in Preventive Interventions.

机构信息

Arizona State University, Tempe, AZ, USA.

Phoenix Children's Hospital, Phoenix, AZ, USA.

出版信息

Prev Sci. 2023 Apr;24(3):505-516. doi: 10.1007/s11121-021-01262-3. Epub 2021 Jul 7.

Abstract

Growth mixture models (GMMs) are applied to intervention studies with repeated measures to explore heterogeneity in the intervention effect. However, traditional GMMs are known to be difficult to estimate, especially at sample sizes common in single-center interventions. Common strategies to coerce GMMs to converge involve post hoc adjustments to the model, particularly constraining covariance parameters to equality across classes. Methodological studies have shown that although convergence is improved with post hoc adjustments, they embed additional tenuous assumptions into the model that can adversely impact key aspects of the model such as number of classes extracted and the estimated growth trajectories in each class. To facilitate convergence without post hoc adjustments, this paper reviews the recent literature on covariance pattern mixture models, which approach GMMs from a marginal modeling tradition rather than the random effect modeling tradition used by traditional GMMs. We discuss how the marginal modeling tradition can avoid complexities in estimation encountered by GMMs that feature random effects, and we use data from a lifestyle intervention for increasing insulin sensitivity (a risk factor for type 2 diabetes) among 90 Latino adolescents with obesity to demonstrate our point. Specifically, GMMs featuring random effects-even with post hoc adjustments-fail to converge due to estimation errors, whereas covariance pattern mixture models following the marginal model tradition encounter no issues with estimation while maintaining the ability to answer all the research questions.

摘要

增长混合模型(GMM)应用于具有重复测量的干预研究中,以探索干预效果的异质性。然而,传统的 GMM 很难估计,尤其是在单中心干预研究中常见的样本量下。强制 GMM 收敛的常用策略涉及对模型进行事后调整,特别是将协方差参数约束为类间相等。方法学研究表明,尽管事后调整可以提高收敛性,但它们会将更多脆弱的假设嵌入到模型中,从而对模型的关键方面产生不利影响,例如提取的类别数量和每个类别的估计增长轨迹。为了在不进行事后调整的情况下促进收敛,本文回顾了协方差模式混合模型的最新文献,该模型从边缘建模传统而不是传统 GMM 使用的随机效应建模传统来接近 GMM。我们讨论了边缘建模传统如何避免具有随机效应的 GMM 遇到的估计复杂性,我们使用了一项生活方式干预的肥胖 90 名拉丁裔青少年胰岛素敏感性增加(2 型糖尿病的危险因素)的数据来证明我们的观点。具体来说,具有随机效应的 GMM——即使进行了事后调整——也由于估计误差而无法收敛,而遵循边缘模型传统的协方差模式混合模型在保持回答所有研究问题的能力的同时,不会遇到估计问题。

相似文献

1
Facilitating Growth Mixture Model Convergence in Preventive Interventions.
Prev Sci. 2023 Apr;24(3):505-516. doi: 10.1007/s11121-021-01262-3. Epub 2021 Jul 7.
2
Covariance pattern mixture models: Eliminating random effects to improve convergence and performance.
Behav Res Methods. 2020 Jun;52(3):947-979. doi: 10.3758/s13428-019-01292-4.
3
Improving convergence in growth mixture models without covariance structure constraints.
Stat Methods Med Res. 2021 Apr;30(4):994-1012. doi: 10.1177/0962280220981747. Epub 2021 Jan 12.
4
Nonconvergence, covariance constraints, and class enumeration in growth mixture models.
Psychol Methods. 2023 Aug;28(4):962-992. doi: 10.1037/met0000456. Epub 2022 May 16.
5
Exploration of model misspecification in latent class methods for longitudinal data: Correlation structure matters.
Stat Med. 2023 Jun 30;42(14):2420-2438. doi: 10.1002/sim.9730. Epub 2023 Apr 5.
7
Improvements on Gaussian mixture model and its application in identifying aerosol types in two major cities in the Yangtze River Delta, China.
Sci Total Environ. 2024 Jul 20;935:172743. doi: 10.1016/j.scitotenv.2024.172743. Epub 2024 Apr 26.
8
Modern Methods for Modeling Change in Obesity Research in Nursing.
West J Nurs Res. 2017 Aug;39(8):1028-1044. doi: 10.1177/0193945917697221. Epub 2017 Apr 24.
10
Conditional median-based Bayesian growth mixture modeling for nonnormal data.
Behav Res Methods. 2022 Jun;54(3):1291-1305. doi: 10.3758/s13428-021-01655-w. Epub 2021 Sep 29.

引用本文的文献

1
Longitudinal Profiles and Predictors of Physical Activity in Cancer Survivors Post-Exercise Intervention: A 5-Year Follow-Up of the Phys-Can RCT.
Integr Cancer Ther. 2025 Jan-Dec;24:15347354251362447. doi: 10.1177/15347354251362447. Epub 2025 Aug 8.
2
Exploration of model misspecification in latent class methods for longitudinal data: Correlation structure matters.
Stat Med. 2023 Jun 30;42(14):2420-2438. doi: 10.1002/sim.9730. Epub 2023 Apr 5.
3
Classification and prediction of cognitive trajectories of cognitively unimpaired individuals.
Front Aging Neurosci. 2023 Mar 13;15:1122927. doi: 10.3389/fnagi.2023.1122927. eCollection 2023.

本文引用的文献

1
Identification of developmental trajectory classes: Comparing three latent class methods using simulated and real data.
Adv Life Course Res. 2019 Dec;42:100288. doi: 10.1016/j.alcr.2019.04.018. Epub 2019 Apr 27.
2
Nonconvergence, covariance constraints, and class enumeration in growth mixture models.
Psychol Methods. 2023 Aug;28(4):962-992. doi: 10.1037/met0000456. Epub 2022 May 16.
3
Improving convergence in growth mixture models without covariance structure constraints.
Stat Methods Med Res. 2021 Apr;30(4):994-1012. doi: 10.1177/0962280220981747. Epub 2021 Jan 12.
4
Response heterogeneity to lifestyle intervention among Latino adolescents.
Pediatr Diabetes. 2020 Dec;21(8):1430-1436. doi: 10.1111/pedi.13120. Epub 2020 Oct 8.
5
Latent Class Analysis for Developmental Research.
Child Dev Perspect. 2016 Mar;10(1):59-64. doi: 10.1111/cdep.12163. Epub 2016 Jan 27.
6
Covariance pattern mixture models: Eliminating random effects to improve convergence and performance.
Behav Res Methods. 2020 Jun;52(3):947-979. doi: 10.3758/s13428-019-01292-4.
8
AR(1) latent class models for longitudinal count data.
Stat Med. 2018 Dec 20;37(29):4441-4456. doi: 10.1002/sim.7931. Epub 2018 Aug 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验