School of Physics, Center for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin (TCD), D02 Dublin, Ireland.
Institute of Functional Epigenetics, Helmholtz Zentrum München (HMGU), Neuherberg 85764, Germany.
Rev Sci Instrum. 2021 Jun 1;92(6):065001. doi: 10.1063/5.0047631.
We present a nanomechanical platform for real-time quantitative label-free detection of target biomolecules in a liquid environment with mass sensitivity down to few pg. Newly fabricated arrays of up to 18 cantilevers are integrated in a micromachined fluidic chamber, connected to software-controlled fluidic pumps for automated sample injections. We discuss two functionalization approaches to independently sensitize the interface of different cantilevers. A custom piezo-stack actuator and optical readout system enable the measurement of resonance frequencies up to 2 MHz. We implement a new measurement strategy based on a phase-locked loop (PLL), built via in-house developed software. The PLL allows us to track, within the same experiment, the evolution of resonance frequency over time of up to four modes for all the cantilevers in the array. With respect to the previous measurement technique, based on standard frequency sweep, the PLL enhances the estimated detection limit of the device by a factor of 7 (down to 2 pg in 5 min integration time) and the time resolution by more than threefold (below 15 s), being on par with commercial gold-standard techniques. The detection limit and noise of the new setup are investigated via Allan deviation and standard deviation analysis, considering different resonance modes and interface chemistries. As a proof-of-concept, we show the immobilization and label-free in situ detection of live bacterial cells (E. coli), demonstrating qualitative and quantitative agreement in the mechanical response of three different resonance modes.
我们提出了一种纳米机械平台,可在液体环境中实时定量无标记检测目标生物分子,其质量灵敏度低至几个 pg。新制造的多达 18 个悬臂阵列集成在微加工的流体腔中,并与软件控制的流体泵连接,用于自动样品注入。我们讨论了两种功能化方法,可以独立地敏化不同悬臂的界面。定制的压电堆叠致动器和光学读出系统能够测量高达 2 MHz 的共振频率。我们实现了一种基于锁相环 (PLL) 的新测量策略,该策略是通过内部开发的软件构建的。PLL 允许我们在同一个实验中跟踪多达四个模式的共振频率随时间的演变,对于阵列中的所有悬臂。与基于标准频率扫描的先前测量技术相比,PLL 将器件的估计检测限提高了 7 倍(在 5 分钟积分时间内降至 2 pg),时间分辨率提高了三倍以上(低于 15 秒),与商业黄金标准技术相当。通过艾伦偏差和标准偏差分析研究了新设置的检测限和噪声,考虑了不同的共振模式和界面化学。作为概念验证,我们展示了活细菌细胞(大肠杆菌)的固定化和无标记原位检测,证明了三种不同共振模式的机械响应具有定性和定量的一致性。