Morvan Claire, Folgosa Filipe, Kint Nicolas, Teixeira Miguel, Martin-Verstraete Isabelle
Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, Université de Paris, Paris, F-75015, France.
Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal.
Environ Microbiol. 2021 Aug;23(8):4112-4125. doi: 10.1111/1462-2920.15665. Epub 2021 Jul 17.
Clostridia comprise bacteria of environmental, biotechnological and medical interest and many commensals of the gut microbiota. Because of their strictly anaerobic lifestyle, oxygen is a major stress for Clostridia. However, recent data showed that these bacteria can cope with O better than expected for obligate anaerobes through their ability to scavenge, detoxify and consume O . Upon O exposure, Clostridia redirect their central metabolism onto pathways less O -sensitive and induce the expression of genes encoding enzymes involved in O -reduction and in the repair of oxidized damaged molecules. While Faecalibacterium prausnitzii efficiently consumes O through a specific extracellular electron shuttling system requiring riboflavin, enzymes such as rubrerythrins and flavodiiron proteins with NAD(P)H-dependent O - and/or H O -reductase activities are usually encoded in other Clostridia. These two classes of enzymes play indeed a pivotal role in O tolerance in Clostridioides difficile and Clostridium acetobutylicum. Two main signalling pathways triggering O -induced responses have been described so far in Clostridia. PerR acts as a key regulator of the O - and/or reactive oxygen species-defence machinery while in C. difficile, σ , the sigma factor of the general stress response also plays a crucial role in O tolerance by controlling the expression of genes involved in O scavenging and repair systems.
梭菌包括具有环境、生物技术和医学意义的细菌以及肠道微生物群中的许多共生菌。由于其严格的厌氧生活方式,氧气对梭菌来说是一种主要压力。然而,最近的数据表明,这些细菌通过其清除、解毒和消耗氧气的能力,比专性厌氧菌更能应对氧气。在接触氧气后,梭菌将其中央代谢重定向到对氧气不太敏感的途径,并诱导编码参与氧气还原和氧化损伤分子修复的酶的基因表达。虽然普拉梭菌通过一种需要核黄素的特定细胞外电子穿梭系统有效地消耗氧气,但具有依赖于NAD(P)H的氧气和/或过氧化氢还原酶活性的酶,如红素氧还蛋白和黄素二铁蛋白,通常在其他梭菌中编码。这两类酶在艰难梭菌和丙酮丁醇梭菌的耐氧性中确实起着关键作用。到目前为止,在梭菌中已经描述了两种触发氧气诱导反应的主要信号通路。PerR作为氧气和/或活性氧防御机制的关键调节因子,而在艰难梭菌中,一般应激反应的σ因子也通过控制参与氧气清除和修复系统的基因表达,在耐氧性中发挥关键作用。