Suppr超能文献

头孢氨苄在均相和非均相光芬顿过程中的降解机制和途径的研究。

Insights into the degradation mechanisms and pathways of cephalexin during homogeneous and heterogeneous photo-Fenton processes.

机构信息

School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China.

Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China.

出版信息

Chemosphere. 2021 Dec;285:131417. doi: 10.1016/j.chemosphere.2021.131417. Epub 2021 Jul 2.

Abstract

The widespread occurrence of antibiotics in the environment poses a potential threat to human health. The photo-Fenton process has demonstrated better degradation performance compared with the conventional wastewater treatment processes. In this study, the degradation of cephalexin was evaluated comparatively by homogeneous (Fe/HO/UV) and heterogeneous (MoS@Fe/HO/UV) photo-Fenton processes. Key influencing factors affecting photo-Fenton performance were assessed, confirming the optimum Fe concentration at 0.2016 mg L and HO/Fe molar ratio at 6. Higher degradation efficiency (73.10%) and pseudo-first-order degradation rate constant (0.0078 min) were achieved with the assistance of MoS@Fe as the heterogeneous catalyst. Completely different degradation products were identified in the homogeneous and heterogeneous photo-Fenton processes, with main degradation pathways proposed as β-lactam ring-opening, sulfoxide formation, demethylation, N-dealkylation, decarbonylation, hydroxylation and deamination in the Fe/HO/UV system and β-lactam ring-opening, hydroxylation, dehydration, amide hydrolysis, and demethylation and ring contraction in the MoS@Fe/HO/UV system, respectively. The formation of newly identified products might root in the attack on cephalexin from active species (i.e., OH, h, e, O) photoinduced by the MoS@Fe catalyst. Results also indicated the importance of understanding the underlying mechanisms and pathways to eliminate the antimicrobial activities of antibiotics in the future.

摘要

抗生素在环境中的广泛存在对人类健康构成了潜在威胁。与传统的废水处理工艺相比,光芬顿工艺表现出了更好的降解性能。在本研究中,通过均相(Fe/HO/UV)和非均相(MoS@Fe/HO/UV)光芬顿工艺对头孢氨苄的降解进行了比较评价。评估了影响光芬顿性能的关键影响因素,证实了最佳 Fe 浓度为 0.2016 mg/L,HO/Fe 摩尔比为 6。在 MoS@Fe 作为非均相催化剂的辅助下,获得了更高的降解效率(73.10%)和拟一级降解速率常数(0.0078 min)。在均相和非均相光芬顿工艺中鉴定出完全不同的降解产物,提出了主要的降解途径,在 Fe/HO/UV 体系中为β-内酰胺开环、亚砜形成、去甲基化、N-脱烷基化、脱羰基化、羟化和脱氨,在 MoS@Fe/HO/UV 体系中为β-内酰胺开环、羟化、脱水、酰胺水解和去甲基化以及环缩合。新鉴定产物的形成可能源于 MoS@Fe 催化剂诱导的活性物质(即 OH、h、e、O)对头孢氨苄的攻击。结果还表明,了解消除抗生素抗菌活性的潜在机制和途径的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验