Suppr超能文献

FeO@Pt 纳米颗粒实现联合电动力学/化学动力学治疗。

FeO@Pt nanoparticles to enable combinational electrodynamic/chemodynamic therapy.

机构信息

State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.

ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311200, China.

出版信息

J Nanobiotechnology. 2021 Jul 10;19(1):206. doi: 10.1186/s12951-021-00957-7.

Abstract

Electrodynamic therapy (EDT) has recently emerged as a potential external field responsive approach for tumor treatment. While it presents a number of clear superiorities, EDT inherits the intrinsic challenges of current reactive oxygen species (ROS) based therapeutic treatments owing to the complex tumor microenvironment, including glutathione (GSH) overexpression, acidity and others. Herein for the first time, iron oxide nanoparticles are decorated using platinum nanocrystals (FeO@Pt NPs) to integrate the current EDT with chemodynamic phenomenon and GSH depletion. FeO@Pt NPs can effectively induce ROS generation based on the catalytic reaction on the surface of Pt nanoparticles triggered by electric field (E), and meanwhile it may catalyze intracellular HO into ROS via Fenton reaction. In addition, Fe ions released from FeO@Pt NPs under the acidic condition in tumor cells consume GSH in a rapid fashion, inhibiting ROS clearance to enhance its antitumor efficacy. As a result, considerable in vitro and in vivo tumor inhibition phenomena are observed. This study has demonstrated an alternative concept of combinational therapeutic modality with superior efficacy.

摘要

电动力学疗法(EDT)最近作为一种有潜力的肿瘤治疗外部场响应方法出现。虽然它具有许多明显的优势,但由于复杂的肿瘤微环境,包括谷胱甘肽(GSH)过表达、酸度等,EDT 继承了当前基于活性氧(ROS)的治疗方法的固有挑战。在此,首次使用铂纳米晶体(FeO@Pt NPs)对氧化铁纳米粒子进行修饰,将当前的 EDT 与化学动力学现象和 GSH 耗竭相结合。FeO@Pt NPs 可以在电场(E)触发的 Pt 纳米粒子表面的催化反应的基础上有效诱导 ROS 的产生,同时它可以通过芬顿反应将细胞内的 HO 催化成 ROS。此外,在肿瘤细胞的酸性条件下从 FeO@Pt NPs 释放的 Fe 离子快速消耗 GSH,抑制 ROS 的清除,从而增强其抗肿瘤功效。因此,观察到了显著的体外和体内肿瘤抑制现象。这项研究展示了一种具有优越疗效的组合治疗模式的替代概念。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d44/8272323/4520a59e77eb/12951_2021_957_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验